

# Aircraft non-volatile particle emissions: estimating number from mass

Marc E.J. Stettler<sup>1</sup>\*, Adam M. Boies<sup>1</sup>

**UNIVERSITY OF CAMBRIDGE** Department of Engineering <sup>1</sup>University of Cambridge, Department of Engineering, Trumpington Street, Cambridge, UK, CB2 1PZ \*Corresponding author: ms828@cam.ac.uk

## **1. INTRODUCTION**

- Aircraft emissions of non-volatile particulate matter (PM) contribute to anthropogenic climate forcing and degrade air quality.
- Direct radiative forcing (RF) is proportional to emitted *mass* of particles.
- In-direct RF due to contrails and induced cloudiness is



Figure 1: Images of the formation of

## **5. RESULTS – CRUISE ALTITUDE**

- Measured  $EI_n$  are compared to  $EI_n$  estimated using the proposed method and assumed GMD, GSD and  $D_m$  shown in Table 1 from literature [2].
- Good agreement ( $R^2 = 0.98$ ) is shown in Figure 3.

| Measurem                        | nents Assumptions | Estimate        |
|---------------------------------|-------------------|-----------------|
| EI <sub>m</sub> EI <sub>n</sub> | GMD GSD $D_m$     | El <sub>n</sub> |

- potentially greater than the direct RF, however it is highly uncertain [1].
- The *number* of ice particles in contrails has been shown to correspond to the *number* of non-volatile particles, affecting the contrail optical properties [2].
- Estimates of non-volatile PM mass emitted by aircraft have recently been revised [3].
- Estimating particle *number* emissions is required to accurately estimate global aviation climate impacts.

contrail induced cirrus over seven hours. Images published by Haywood et al. [4].

| Aircraft | (g/kg-fuel) (×10 <sup>15</sup> part/kg-fuel) (nm) |      |    |     | (×10 <sup>15</sup> part./kg-fuel) |     |
|----------|---------------------------------------------------|------|----|-----|-----------------------------------|-----|
| B707     | 0.5                                               | 1.7  | 60 | 1.4 | 2.76                              | 1.7 |
| ATTAS    | 0.1                                               | 1.7  | 30 | 1.4 | 2.76                              | 1.6 |
| A310     | 0.019                                             | 0.6  | 25 | 1.4 | 2.76                              | 0.5 |
| B737     | 0.011                                             | 0.35 | 25 | 1.4 | 2.76                              | 0.3 |
| A340     | 0.01                                              | 0.18 | 25 | 1.4 | 2.76                              | 0.3 |

Table 1: Aircraft PM measurements, assumptions andestimates at cruise.



Figure 3: PM measurements, assumptions and estimates at cruise.

## 6. RESULTS - SENSITIVITY

## 2. THEORY

In the free molecular regime (Kn $\rightarrow\infty$ ) for diffusion limited cluster aggregation aggregates, the number,  $n_{va}$ , of primary particles of volume-surface equivalent diameter  $d_{va}$  in an aggregate of mobility diameter  $d_m$  is

$$n_{va} = k_a \left(\frac{d_m}{d_{va}}\right)^{D_m},$$

where  $k_a \sim 1$  is a parameter describing agglomerate structure and  $D_m$  is the mass mobility exponent [5,6].

The mass of an aggregate, m, is the sum of the mass of the primary particles and assuming a constant  $d_{va}$  within a given aggregate,

## **3. EXPERIMENTAL**

### **Ground level**

Measurements of aircraft engine (GE, CFM56-5B4-2P) PM emissions were conducted as part of the SAMPLE III campaign. Particle number and size distribution were measured using a DMS500 (Cambustion Ltd, UK). Nonvolatile particle mass was measured via Laser Induced Incandescence (LII, Artium LII-300) [7].



$$m(d_{va}) = n_{va}\rho_0\left(\frac{\pi}{6}\right)d_{va}^3.$$

For non-volatile PM emitted by aircraft engines, Boies et al. [7] have shown that  $d_{va}$  is a function of  $d_m$  and a power-law fit to experimental data yields  $d_{va} = 0.79d_m^{0.8}$ (R<sup>2</sup>=0.86). For the same aggregates, Johnson et al. [8] have shown that  $D_m = 2.76$ . Combining equations (1) and (2) yields

$$m(d_m) = \rho_0\left(\frac{\pi}{6}\right) 0.79^{(D_m - 3)} d_m^{(2.4 + 0.2D_m)}, \qquad (3)$$

where  $\rho_0 \sim 1900 \text{ kg/m}^3$  is the material density of soot comprised of elemental carbon. Assuming the number weighted aggregate mobility diameter distribution,  $n(d_m)$ , is represented by a mono-modal lognormal distribution, the total mass concentration *M* is the  $d_m^{(2.4+0.2D_m)}$ -th moment,

$$M = \int_0^\infty m(d_m) n(d_m) \mathrm{dlog} d_m$$
$$M = \rho_0 \left(\frac{\pi}{6}\right) 0.79^{(3-D_m)} N_0 \mathrm{GMD}^\phi \exp\left(\frac{\phi^2 (\log \mathrm{GSD})^2}{2}\right), \quad (4)$$

Figure 2. Schematic of sampling system and instruments.

#### Cruise

(1)

(2)

Measurements at cruise of particle mass, number and size distribution were conducted during the SULFUR 1-7 measurement campaigns [2].

#### **Emissions indices**

Engine emissions are normalised to fuel burn to give an emissions index,  $EI_m$  (g/kg-fuel) or  $EI_n$  (part./kg-fuel).

## 4. RESULTS - GROUND LEVEL

- Measured  $EI_n$  are compared to  $EI_n$  estimated using LII measurements of  $EI_m$  and the proposed method. Good agreement ( $R^2 = 0.98$ ) is shown in Figure 2.
- For each data point,  $EI_n$ , GMD and GSD were measured with a DMS500 and  $EI_m$  with an LII.



• Global sensitivity indices [9] indicate that method is most sensitive to input GMD.

| Variable | Nominal value (range) | Sensitivity index   |
|----------|-----------------------|---------------------|
| GMD      | 25 (20-40) n          | m 0.72              |
| GSD      | 1.4 (1.3-1.4          | 5) 0.03             |
| $D_m$    | 2.76 (2.5-2.5         | 9) 0.29             |
| $ ho_0$  | 1900 (1800-1900) kg/n | n <sup>3</sup> 0.01 |

Table 2: Global sensitivity indices of method to inputs.

## 7. SUMMARY

- New method to estimate aircraft EI<sub>n</sub> from EI<sub>m</sub> proposed.
- Estimates show good agreement with measurements (R<sup>2</sup>~0.98) at ground level and cruise.
- Sensitivity analysis indicates that GMD is the input parameter with greatest influence on estimates.
- Next steps are to:
  - i. Develop relationship to estimate GMD as a function of engine operating point
  - ii. Apply method to estimate global aircraft particle number emissions.

## REFERENCES

[1] D.S. Lee, et al., Transport impacts on atmosphere and climate: Aviation, Atmos. Environ. 44 (2010) 4678-4734. doi:10.1016/j.atmosenv.2009.06.005. [2] U. Schumann, et al., Influence of fuel sulfur on the composition of aircraft exhaust plumes: The experiments SULFUR 1-7, J. Geophys. Res. 107 (2002) 4247. doi:10.1029/2001JD000813. [3] M.E.J. Stettler, et al., Global Civil Aviation Black Carbon Emissions., Environ. Sci. Technol. (2013). doi:10.1021/es401356v. [4] J.M. Haywood, et al., A case study of the radiative forcing of persistent contrails evolving into contrail-induced cirrus, J. Geophys. Res. 114 (2009) D24201. doi:10.1029/2009JD012650. [5] C.M. Sorensen, The Mobility of Fractal Aggregates: A Review, Aerosol Sci. Technol. 45 (2011) 765-779. doi:10.1080/02786826.2011.560909. [6] M.L. Eggersdorfer, et al., Aggregate Morphology Evolution by Sintering: Number & Diameter of Primary Particles., J. Aerosol Sci. 46 (2012) 7–19. doi:10.1016/j.jaerosci.2011.11.005. [7] A.M. Boies, et al., Morphology of Gas Turbine Particulate Matter, forthcoming. [8] T.J. Johnson, et al., Effective Density and mass-mobility exponent of aircraft particulate matter, forthcoming. [9] A. Saltelli, et al., Global Sensitivity Analysis. The Primer., Chichester, UK, 2008.

where  $N_0$  is the particle number concentration, GMD and GSD are the geometric mean and standard deviation of the distribution and  $\phi = 2.4 + 0.2D_m$ . Aircraft emissions are typically normalized to the mass of fuel burned, to give an emissions index. Re-arranging equation (4) gives

 $-\rho_0\left(\frac{\pi}{6}\right)0.79^{(3-D_m)}\mathrm{GMD}^{\phi}\exp\left(\frac{\phi^2(\log\mathrm{GSD})^2}{2}\right)$ 



 $EI_n = -$ 

Acknowledgments: Mark Johnson (Rolls Royce plc), Theo Rindlisbacher (FOCA).

Email: ms828@cam.ac.uk

Engineering and Physical Sciences

Energy Efficient Cities initiative