

1-3 nm particles in urban air

Minna Väkevä¹, Joonas Vanhanen¹, Katrianne Lehtipalo^{1,2},
Jyri Mikkilä^{1,2}, Markku Kulmala²

¹Airmodus Ltd., Pietari Kalmin katu 1 F 1, 00560 Helsinki, Finland

²University of Helsinki, Finland

E-mail minna.vakeva@airmodus.com

Principle of detecting the smallest particles

Diethylene glycol enables reaching higher supersaturations and activating smaller particles (than water/butanol) without homogenous nucleation. A second stage (growth booster) is needed to reach optical sizes. Ilda et al., 2009

PSM flow diagram

A11 nCNC

Sampling:

The losses of the smallest particles are remarkable → Short sampling lines

Nucleation:

PSM acts as a nucleation chamber; delicate process that is sensitive to the same parameters that affect nucleation in general

Summary of studies:

- Always $^{\sim}1000 100000$ particles/cm3 in the size range < 3 nm in the atmosphere.
- This size range consists of molecules, clusters and particles.
- Most of them are neutral and cannot be measured using techniques based on e.g. electrical mobility.
- Crucial to measure to understand particle formation

Measurements in Helsinki – urban background & near road

University Campus in Kumpula, above a street with a bus stop

Data by D. Wimmer, University of Helsinki

Further reading: www.airmodus.com → Highlights → Publications

AIRMODUS