

Development of an Innovative in Vitro Inhalation Model for Studying the Effects of Diesel Exhaust

M.C. Zarcone, G. Amatngalim, E. Duistermaat, P.S. Hiemstra, I.M. Kooter

18th ETH-Conference on Combustion Generated Nanoparticles
Session 6 B-Health Effects

Diesel exposure and lung diseases

- Diesel engines are the major source of pollution in urban areas
- Diesel exposure is possibly associated with:
 - onset of childhood asthma
 - asthma exacerbations
 - COPD exacerbations
 - respiratory infections
 - respiratory symptoms not related to asthma
 - impaired lung function
 - lung cancer

Biological mechanisms still unclear

No data available on the relative importance of exposure

concentration and duration

Aim

> Study the sensitivity of differentiated primary bronchial epithelial cells (PBEC) from COPD and asthma patients compared to cells from healthy subjects and to explore underlying mechanisms

- Value effect of different concentration of diesel exhaust versus different exposure duration
- Compare response from continuous and intermittent exposure

Integrated approach

- > State of art exposure facilities to generate well defined and **realistic** emissions
- Air liquid interface (ALI) cell exposure system
- Primary bronchial epithelial cells cultured at the ALI obtained from COPD and asthma patients from the LUMC

Powertrain test center at TNO represents **realistic** diesel engine exposure

- Lack of data of primary cells response to diesel
- Logistic and cost issues
- **>** Lab scale set up to mature experience

Lab scale engine exposure

Exhaust produced in situ Modulation of engine load

Chemical characterization

Mixture characterization Independently from exposure

- PM mass
- EC
- PAH
- Oxy-PAH
- Nitro-PAH
- CO
- CO₂
- NO/NO₂
- TCH
- Oxidative potential

Mixture characterization

During exposure

- Rel.hum./temperature
- [CO₂]
- [O₂]
- SMPS (particle size distribution)
- [PM] for each dose from gravimetric filter deposition

Measured at five engine loads points

Exposure duration

- > Cells exposed to diluted diesel exhaust (DE) mixtures:
 - **High** (9-fold diluted DE mixture)
 - Mid (27-fold diluted DE mixture)
 - LOW (81-fold diluted DE mixture)

Cells were harvested at 6 and 24hr post exposure

Epithelial barrier function (TEER measurement)

Cytotoxicity (LDH release)

Oxidative stress induction (HMOX1 and NQO1 mRNA expression)

Exposure duration: barrier function and cytotoxicity

Exposure duration: oxidative stress

DE dose-dependent activation of oxidative stress response for all exposure durations

Donor variation (n=3)

NQO1 -Ox. Stress response-

IL-8 -Inflammation-

GADD34 -ER Stress response-

DE dose-dependent activation of oxidative stress response, inflammation and ER stress response

Effect of engine load

Chemical characterization

kWatt	PM	CO	NO	NO ₂	NO _x
	mg/m^3	ppm	ppm	ppm	ppm
4,5	32,7	252	94	62	156
6,5	17,8	251	120	42	162
9	17,7	202	189	23	212

- Cell exposure conditions
 - > n=2 donors
 - Air (Air D1, Air D2)
 - High DE (High D1, High D2)
 - > 2:30hr exposure
 - Analyses 6hr post exposure

Effect of engine load

Increasing the engine load lowers the cytotoxic effect

Conclusions

- We are able to study biological effects of diesel exhaust from differentiated primary bronchial epithelial cells at the air-liquid interface using the air exposure route
- We have optimized our testing system for diesel exhaust exposures using a diesel generator at lab scale conditions
- Use of (at least) three donors is recommended
- A clear oxidative and ER stress response was found, but also in activation of the inflammation
- Increasing engine load lowers the cytotoxicity

Acknowledgements

Lung Foundation Netherlands (Longfonds)

LUMC

Pieter Hiemstra Gimano Amatngalim Renate Verhoosel

TNO Triskelion

Evert Duistermaat Birol Usta

<u>TNO</u>

Ingeborg Kooter
Aleksandra Jedynska
Marc Houtzager
Thomas Ivens
Gertjan Koornneef

