

Near-Road Monitoring of Ultrafine Particle Number from Heavy Duty Diesel Truck Traffic

<u>ROBERT C. ANDERSON¹</u>, Donald Hammond², Ahmed Mehadi², PhD, Timothy J. Morphy⁴, Andrea Polidori³, PhD, Jeffrey Wright²

¹TSI Incorporated, ²California Air Resources Board, ³South Coast Air Quality Management District, ⁴Teledyne

19th ETH-Conference on Combustion Generated Nanoparticles June 28th - July 1st, 2015 at ETH Zentrum, Zürich, Switzerland

Background

- Exposure to ultrafine particles (UFP) may contribute to heart and lung diseases leading to hospitalization and premature death
- UFP are/will be measured near California roadways by local air districts (USEPA Near-Road Monitoring Rule)
- Condensation Particle Counters (CPC) characterize UFP by measuring particle number (PN) concentrations
- <u>2011</u>: TSI released a water-based CPC (model 3783) intended for long-term, 24/7 operation (network use) in background and near-source (e.g. near-road) environments
- <u>2013</u>: TSI released updated version of model 3783

Study Outline

- Collaboration between SCAQMD, ARB, UCLA, TSI and TAPI to study the performance reliability of the 3783 TSI model:
 - 2011 Study (Phase I): SCAQMD, UCLA, and ARB
 - May 16 to June 14
 - Three CPC models: 3781 (x3), 3783 (x3), and 3785 (x3)
 - Inter- and Intra-model variability
 - Pre-MATES IV evaluation
 - 2011 Study (Phase II): ARB, SCAQMD, TSI, and TAPI
 - o June 2011 to April 2012
 - 3783 model (x3)
 - Continued testing of durability
 - Stopped due to continual instrument breakdown
 - 2013 Study: ARB, SCAQMD, TSI, and TAPI
 - August 21, 2013 to April 17, 2014
 - Upgraded 3783 model (x3)
 - Testing of durability and precision

Site Location and Instrument Set-up

Site Location and Instrument Set-up

Site is downwind of the I-710 freeway ~50% of the time

Site Location and Instrument Set-up

TSI Water CPC 3783

Min Detectable Diameter (D50)	7 nm
Maximum Detectable PN (#/cm ³)	1 x 10 ⁶
Particle Counting Errors	± 10% at 1x10 ⁶ /cm ³
Aerosol Flow Rates (L/min) optics / sample fow	0.12 / 3.0

2011 Study (Phase I; May 16 - June 14) TSI 3783 Variability

3783 WCPC Design Modifications

- Longer growth tube & longer wick cartridge
- Vent Assist
- New protection filters for flow orifices
- New ejector pump for better reliability combined with lower water separator temp (7°C vs. 20°C)

Old (paper)

New (glass fiber)

2013 Study (August 21, 2013 – April 17, 2014) Upgraded TSI 3783 Performance

Set-up

- Three modified TAPI 651
- Improved meteorological data
- CPCs synced with ARB datalogger
- Objectives
 - Evaluate precision and durability
- August 21 to December 31, 2013: set-up issues (e.g. old firmware, shared pump)
 - Good durability but low precision
- January 1 to April 17, 2014: substantial work done to improve QA/QC procedures (e.g. new firmware, individual pumps, static dissipative tubing, consistent maintenance procedure)
 - Optimal configuration resulted in reduced intra-model variability

2013 Study (August 21, 2013 – April 17, 2014) **Upgraded TSI 3783 Performance**

CPC3, 100000

50000

0

0

%CV = 1.0

CPC1, PN/cm3

200000

%CV = 1.5

CPC2, PN/cm3

200000

100000

50000

0

0

n 100000

50000

0

%CV = 1.3

CPC1, PN/cm3

200000

criteria at network level for PM2.5 is 10%

2013 Study (August 21, 2013 – April 17, 2014) Upgraded 3783 Performance

2013 Study (August 21, 2013 – April 17, 2014) **Upgraded 3783 Performance** CPC1 vs CPC2

Excellent correlation even for 1-minute data between March 14 and April 17, 2014

 $R^2 = 0.995$

2013 Study (August 21, 2013 – April 17, 2014) Upgraded 3783 Performance Lessons Learned – QA/QC

- Monthly cyclone cleaning is sufficient even at highly polluted locations
- Turn off vacuum pump when replacing wicks and performing inlet cleaning
- Service vacuum pump every year and provide backup pump at site
- Use datalogger when operating CPCs:
 - Time synchronization
 - Prompt review of diagnostic and PN data
- Periodic collocation with an independent CPC is recommended (no calibration standard available)
- An SOP summarizing these QA/QC checks is available

All Vehicles vs. PN – All Lanes

Relationship of Total Number of Vehicles Passing by vs. Particle Number

Wind Rose Plots I-710 freeway

Northbound vs. Southbound

Vehicle Number vs. PN by Lane

Lane 3-Truck vs. PN

Trucks vs. PN – All Lanes (NB+SB)

Trucks vs PN- all lanes

2013 Study (August 21, 2013 – April 17, 2014) Upgraded TSI 3783 Performance Conclusions

- When proper QA/QC practices are followed the 3783 operates reliably for extended periods of time. >75% data capture can be expected. Meets the criteria for ambient air monitoring networks
- Better correlations of truck counts vs. PN compared to total vehicles counts vs. PN support the previous findings that overall on-highway diesel engines release more UFP compared to non-diesel engines in urban environments.
- Combining vehicle type traffic count information with real time PN provides a robust data set to assist regulators and researchers with better understanding of population exposure to ultrafine PN.

Acknowledgement

Monitoring

- Johanna Garcia (ARB)
- Adolfo Garcia (ARB)
- Phil Wagner (ARB)
- Michael Koch (SCAQMD)
- Eric Holden (TAPI)
- Maynard Havlicek (TSI)

CONTACTS:

SCAQMD - Andrea Polidori: apolidori@aqmd.gov ARB - Jeff Wright: jwright@arb.ca.gov Teledyne - Timothy J. Morphy: teledyne.com TSI - Robert C. Anderson: robert.anderson@tsi.com

*ARB and SCAQMD participation in the study does not indicate approval or endorsement of a particular product or vendor. Any opinions, findings, conclusions, or recommendations expressed in this presentation are those of the authors and do not necessarily reflect the views of ARB or SCAQMD.

Data Support

- Matthew Vona (ARB)
- Aman Bains (ARB)

Back-up Slides

NYSDEC – Peace Bridge US/CAN

Weekday vs. Weekend

