The Effect of Primary Particle Polydispersity on the Morphology and Mobility Diameter of the Fractal Agglomerates in Different Flow Regimes

19th ETH-Conference on Combustion Generated Nanoparticles

Ramin Dastanpour, Steven Rogak

University of British Columbia (UBC), Vancouver, Canada

June 29th 2015

a place of mind

Outline

- Motivation
- Method
- Results
 - Morphology
 - Mobility Diameter in the Free Molecular Regime
 - Mobility Diameter in the Stokesian Regime
- Conclusion

Motivation

- Aerosol and colloidal agglomerates are formed in industrial and natural environments
 - Production rate of synthetic particles
 - Aerosol residence time in atmosphere
 - Motion under different flow regimes
 - Size distribution and emission rate

Major assumptions:

- Spherical structure (Flagan 2008)
- Fractal clusters <u>BUT</u> composed of monodisperse primary particles (Lall & Friedlander 2006)

 Soot particles are composed of poylispersed primary particles

- Effect of primary particle polydispersity
 - Light absorption and scattering (RDG-FA) (Farias et al. 1996)
 - Fractal dimension (Eggersdorfer & Pratsinis 2012)
 - Mass, Surface area, Projected area, Gyration radius, Mobility diameter

Particle generation (Eggersdorfer & Pratsinis)

- Hierarchical cluster-cluster agglomeration
- Point-touching monomers
- Number of the primary particles (N_p): 16, 32, 64, 128, 256, 512
- Log-normal size distribution for primary particles
- Geometric standard deviation of primary particle size (σ_g): 1.0, 1.2, 1.4, 1.6
- 100 particles for each $N_{\rm p}$ and $\sigma_{\rm g}$ (2400 in total)

Method

Geometric parameters

Gyration radius

$$R_g^2 = \frac{1}{N_p} \sum_{i=1}^{N_p} (a_{i-CM}^2 + R_i^2)$$

Mass-fractal dimension

$$N_{\rm p} = k_{\rm f} \left(\frac{R_{\rm g}}{R_{\rm pg}}\right)^{D_{\rm f}}$$

Surface area and mass

Free molecular regime

Each particle was projected into 50 random orientations

 $d_{\mathrm{m,FM}} \cong \overline{d_{\mathrm{a}}} = 2 \sqrt{\frac{\overline{a_{\mathrm{a}}}}{\pi}}$

 Rogak et al. 1993 as confirmed by Monte-Carlo momentum transfer simulations of Chan & Dahneke 1981; Mackowski 2006

Continuum regime: <u>Stokesian Dynamics</u>

- Grand resistance matrix: Durlofsky et al. 1986 algorithm
- Exact two-body resistance functions of unequal primary particles Jeffrey & Onishi 1984 and Kim & Karrila 2013

THE UNIVERSITY OF BRITISH COLUMBIA

a place of mind

Mass-Fractal dimension

• Fractal dimension decreased from 1.78 to 1.73 as primary particle polydispersity increased (consistent with Eggersdorfer & Pratsinis 2012)

Gyration radius

• 18% increase in $R_{\rm g}$ at $\sigma_{\rm g}$ =1.6

• Fixed median diameter (d_{pg}) :

$$\overline{d_{
m p}}=d_{
m pg}{
m e}^{0.5~{
m ln}^2~\sigma_{
m g}}$$
 (Seinfeld & Pandis 2012)

Surface area and mass

a place of mind

Surface area and mass

$$m_{\rm agg} = \frac{\pi}{6} \rho d_{\rm p}^3 N_{\rm p}$$

• Even a slight polydispersity (σ_g =1.2) results in 12-16% overestimation of N_p (compared to $N_{p,s}$)

$$N_{\rm p,m} = (0.82 + 0.18 \,\sigma_{\rm g}^{6.28}) \,N_{\rm p}$$

 $N_{\rm p,s} = (1 + 0.06 \,\sigma_{\rm g}^{5.08}) \,N_{\rm p}$

a place of mind

Free molecular regime mobility diameter

- 50 random projections
- Hit-or-miss scanning algorithm

$$d_{\rm m,fm} = d_A = k_{\rm m,fm} d_{\rm pg} N_{\rm p}^{D_{\rm m,FM}}$$

σ _g	D _{m,fm}	k _{m,fm}	
1.0	0.46	0.970 (±0.011)	
1.2	0.46	1.006 (±0.010)	
1.4	0.46	1.095 (±0.010)	
1.6	0.46	1.226 (±0.012)	

 $k_{
m m,fm}$ increases up to <u>26%</u> when $\sigma_{
m g}$ reaches 1.6

 $\flat \ \ d_{m,fm} = (0.94 + 0.03 \ \sigma_g^{4.8}) \ d_{pg} \ N_p^{0.46}$

Sorensen 2011: $d_{m,fm} = d_p N_p^{0.46}$, all N_p

Continuum regime mobility diameter

 Doublets (SD compared to analytical solutions and LBM (Binder et al. 2006)

Flow	Normalized	Binder et al.		Relative Difference	
	F _d	(2006)		(%)	
xyz	SD	Analytical	LBM	SD to Analytical	SD to LBM
001	1.23	1.29	1.27	-4.9	-3.3
101	1.33	1.36	1.36	-2.3	-2.3
100	1.43	1.43	1.4	0.0	2.1
111	1.37	1.36	1.35	0.7	1.5

• Straight chains

a place of mind

BB

a place of mind

THE UNIVERSITY OF BRITISH COLUMBIA

13

Continuum regime mobility diameter

D....

• 50 random orientations

$$d_{m,c} = k_{m,c} \ d_{pg} \ N_p^{Dm,c}$$

$$\sigma_g \qquad D_{m,c} \qquad k_{m,c}$$
1.0
0.52
0.887 (±0.005)
1.2
0.52
0.917 (±0.004)
1.4
0.52
0.987 (±0.010)
1.6
0.52
1.086 (±0.005)

 $k_{
m m,c}$ increases up to <u>22%</u> when $\sigma_{
m g}$ =1.6

$$\succ$$
 $d_{\rm m,c} = (0.85 + 0.03 \,\sigma_{\rm g}^{4.4}) \, d_{\rm pg} \, N_{\rm p}^{0.52}$

Sorensen 2011 $d_{m,c} = d_p N_p^{0.46}, N_p < 100$ $d_{m,c} = 0.65 d_p N_p^{0.52}, N_p > 100$

• $\beta = R_{m,c}/R_g$ is approximately independent of primary particle polydispersity in the continuum regime

a place of mind

Conclusions

- For a fixed $N_{\rm p}$ and $d_{\rm pg}$, the physical size of the aggregate increases substantially with $\sigma_{\rm g}$
 - Arithmetic average primary particle size, surface area, total mass, Gyration radius
- Mobility diameter of fractal agglomerates increase with σ_g
 - Free molecular regime: ~26% for σ_g =1.6
 - Continuum regime: ~23% for σ_g =1.6
- In the continuum regime, the ratio of d_{m,c}/d_g is approximately independent of the primary particle polydispersity
- Nearly all of the changes in continuum mobility diameter are due to the change in radius of gyration
- Considerable variation of d_{m,c}/d_g in the literature cannot all be ascribed to calculation or measurement error: different cluster aggregation mechanism yield different structures

a place of mind