Nanoparticle Emissions from an SI Engine Fueled with Gasoline and Methanol Reforming Products

Rafael Fleischman Leonid Tartakovsky

TECHNION Israel Institute of Technology

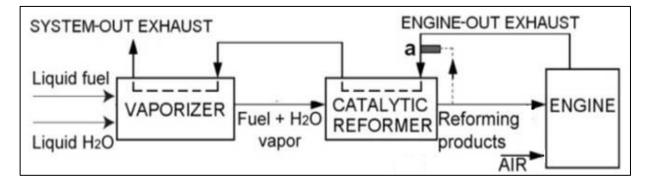
1. Motivation

CHALLENGES

- ICE: main transportation power plant
 - US road vehicles powered by ICE: <u>over 99%</u> (U.S.EIA, 2015)
- Fossil fuels dependence
 - US transport sector usage of fossil fuels: <u>95%</u> (U.S.EIA, 2015)
- Climate Change
 - Global transport sector contribution to CO₂ emissions: <u>23%</u> (IEA, 2012)
- **Pollutants emissions** from transport sector (EEA, 2009)
 - NO_x: 58% ; CO: 30%
 - PM10: 22% ; PM2.5: 27%

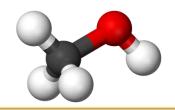
POSSIBLE SOLUTIONS

- Low carbon-intensity, renewable fuels
- Advanced combustion strategies
- Vehicles energy efficiency improvement


1. Waste Heat Recovery by Thermo-Chemical Recuperation

HOW TO INCREASE VEHICLE OVERALL EFFICIENCY?

- Exhaust gases: About 1/3 of fuel energy
 - Usually wasted
- Waste heat recovery
- Thermo-Chemical Recuperation
 - Liquid fuel and water supplied to the system
 - They are evaporated and then reformed
 - Gaseous reforming products inserted into the engine and burnt
 - Exhaust gases energy used to reform primary fuel
 - Possible with many liquid fuels
 - Methanol was chosen



1. Why Methanol?

LIQUID METHANOL:

- Low reforming temperatures
- Promising primary liquid fuel
 - Low carbon-intensity
 - Potentially renewable
 - Can produced from natural gas
 - Alternative for oil as a short term solution
- No significant infrastructure change needed

GASEOUS REFORMING PRODUCTS:

- Hydrogen-rich gaseous fuel: $H_2 \approx 75\% + CO_2 + CO_2$
- Better fuel properties
 - LHV increase
 - Increased ON: elevated compression ratio
 - High laminar flame speed
 - Wide flammability limits
- Zero-impact pollutant emissions
- No problems of onboard hydrogen storage

1. Methanol Reforming Drawbacks

 Intense research on Methanol reforming in the 70's and 80's

DRAWBACKS:

- Backfire
- Pre-ignition
- Reduced maximal power
 - Lower volumetric efficiency
- Startup and transient behavior problems
- Activities were stopped

19° ETH Conference on Combustion Generated Nanoparticles

SOLUTIONS:

Direct injection of reforming products

Hybrid propulsion system

2. Methodology

- Testing engine powered by different fuels
 - 95 RON gasoline
 - Syngas imitating methanol reformate products (75% H₂ 25% CO₂)
- Controlled parameters:
 - Engine Load
 - Injection and Ignition times
 - Air-fuel equivalence ratio (lambda)
- Measured or calculated parameters:
 - Engine performance
 - Combustion quality: in-cylinder pressure
 - Concentrations of gaseous pollutants CO, CO₂, NO_x
 - Particle size distribution and particle number concentration (PN)

2. Experimental Setup: The engine

- Chosen Engine: Gen-set ROBIN EY20-3
- Side-valve engine
 - More space in the cylinder head
 - In-cylinder pressure transducer
 - Fuel injector
- No market-available injectors
 - Direct Injector was developed

183

6.3

2.2 @ 3000

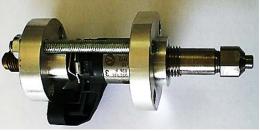
Splash type

Gravity type

NGK B6HS Recoil starter

Flywheel magneto

Horizontal draft, Float type


Centrifugal flyweight type

Removed part of the injector body

Engine

Bore x Stroke, mm

Displacement, cm3

Compression ratio

Gasoline feed system

Lubrication

Carburetor

Spark plug

Ignition system

Starting system

Governor system

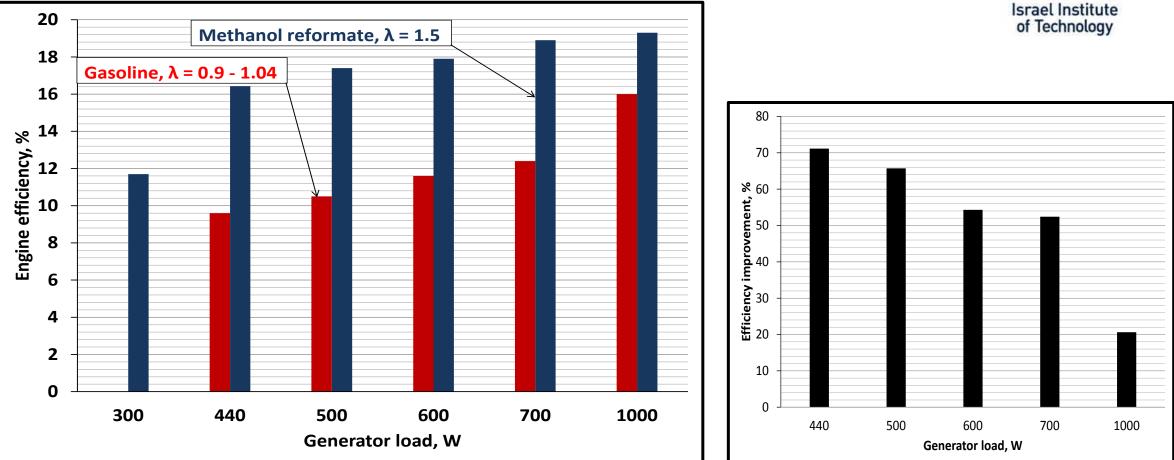
Power, kW @ speed, rpm

2. Experimental Setup: Pollutants Measurement Devices

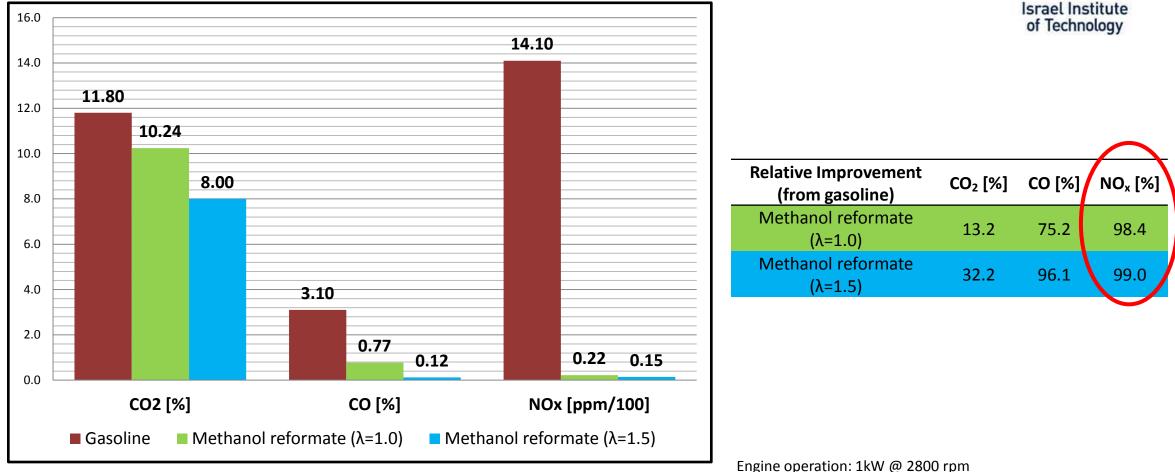
- Chemiluminescence Teledyne 200EH (NO/NO₂/NO_x)
- NDIR CAI 600 (CO/CO₂)
- NanoMet3 Matter Aerosol (Total PN)
- EEPS 3090 (Particles Size Distribution)

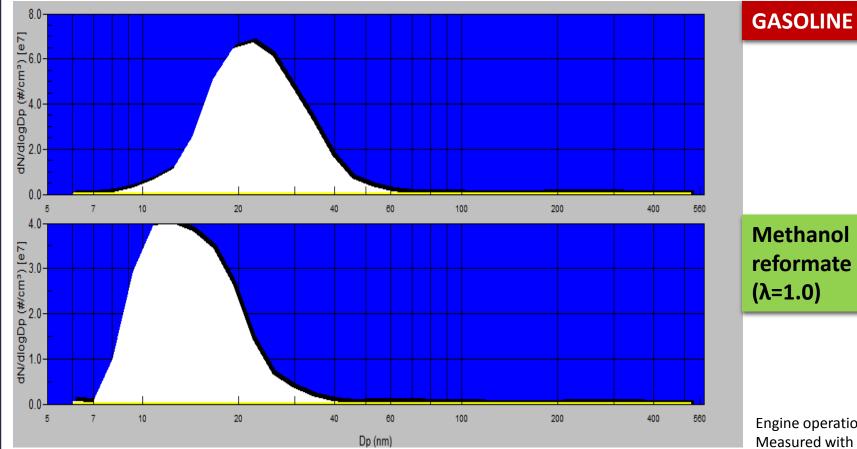
19th ETH Conference on Combustion Generated Nanoparticles

2. Experimental Setup: Overall System

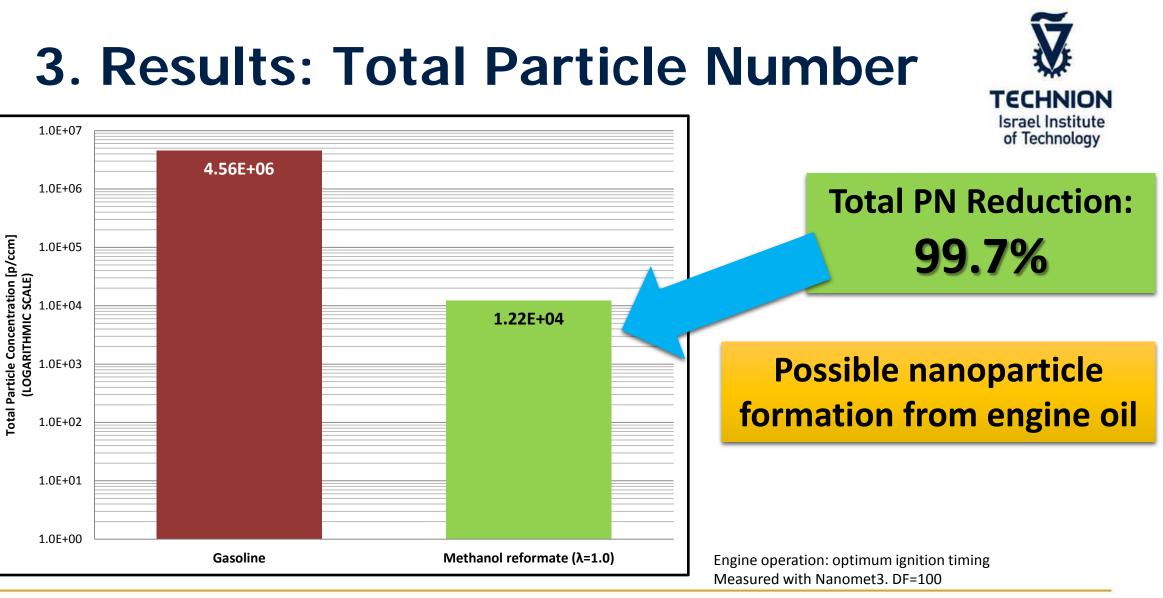


19th ETH Conference on Combustion Generated Nanoparticles


3. Results: Engine Efficiency


3. Results: Gaseous Emissions

3. Results: Nanoparticle Size Distribution



- Similar pattern, methanol reformate nanoparticles slightly smaller
- Influence of Volatiles compounds

Engine operation: 700W @ 2800 rpm Measured with EEPS3090. DF=104.76 / T=150C

19th ETH Conference on Combustion Generated Nanoparticles

4. Conclusions

- Engine efficiency improvement: from 20% to 60%
- Gaseous pollutants reduction:
 - CO₂: 13% (stoichiometric); 32% (lean)
 - CO: 75% (stoichiometric); 96% (lean)
 - NO_x: over 98%
- Similar nanoparticle size distribution profile. Methanol reformate: Slightly smaller
- Total Particulate Number reduction of 99.7%

5. Future steps

- Develop the reformer
- Different reforming compositions
- Study the influence of engine oil
- Study size distribution at Thermodilution Temperature of 300C

Acknowledgements

- The project was financially supported by:
 - Israeli Ministry of Environmental Protection
 - Israeli Ministry of National Infrastructures, Energy and Water Resources
 - Israel Science Foundation
 - The Nancy and Stephen Grand Technion Energy Program (GTEP)
- Special Thanks to:
 - Matter Aerosol
 - Prof. Dr. J. Czerwinski (BFH/AFHB, Biel)
 - Dr. A. Mayer/TTM
 - For borrowing the Nanomet3

Thank you!

TECHNION Israel Institute of Technology

Further info:

tartak@technion.ac.il rf@technion.ac.il Leonid Tartakovsky

Rafael Fleischman

19th ETH Conference on Combustion Generated Nanoparticles