Impact of different fuels on engineout-emissions and on the SCR-on-Filter system

19th ETH Conference on Combustion Generated Nanoparticles

Monday June 29th 2015

Dipl. – Ing. Yves HOHL Manager Exhaust Aftertreatment Department Liebherr Machines Bulle SA

General information

- INTERREG project
- Fuel impact on the engine out emissions
- Fuel impact on the soot reactivity
- B10R20H fuel impact on SCR on Filter performance

Summary

General information

Liebherr – NRM Product Range

Earth Moving & Mining Equipment

Wheel loaders

Wheeled excavators

Telescopic handlers

Crawler excavators (Earthmoving & mining)

Mobile cranes

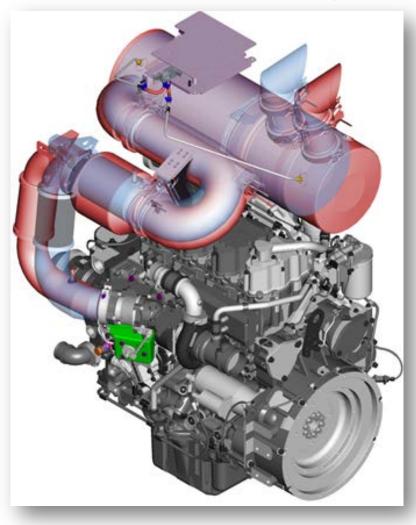
Cranes

Port Equipments & maritime cranes

Crawler cranes

Crawler tractors

Articulated Trucks



SCR on Filter (SCRoF) system

Packaging adavantage

SCR on Filter vs. SCR-only

- Installation comparison between the SCRonly (purple) and SCR on Filter solution (red)
- The component installation is the same for SCR-only and SCR on Filter solution for:
 - The exhaust gas aftertreatment system fixation
 - The sensors
 - The urea supply system
- Only the piping between turbine outlet and SCR on Filter inlet has to be changed
- With this installation, the machine could be sold to the end customer with the SCR-only or with the SCR on Filter solution.
- From the outside of the machine, no differences is visible if SCR-only or SCR on Filter is installed

NOx conversion & PN filtration efficiency

SCRonly - Tier4F

HC

g/kWh

0.0225

0.0106

NOx

g/kWh

0.3376

0.3182

PM

g/kWh

0.02

0.0128

со

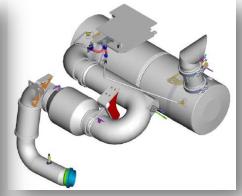
g/kWh

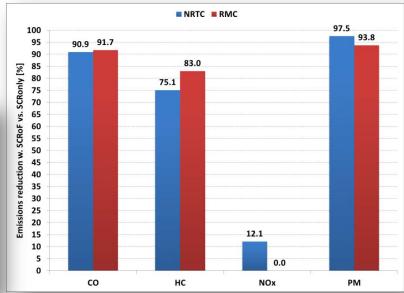
0.4899

0.1778

NRTC

RMC

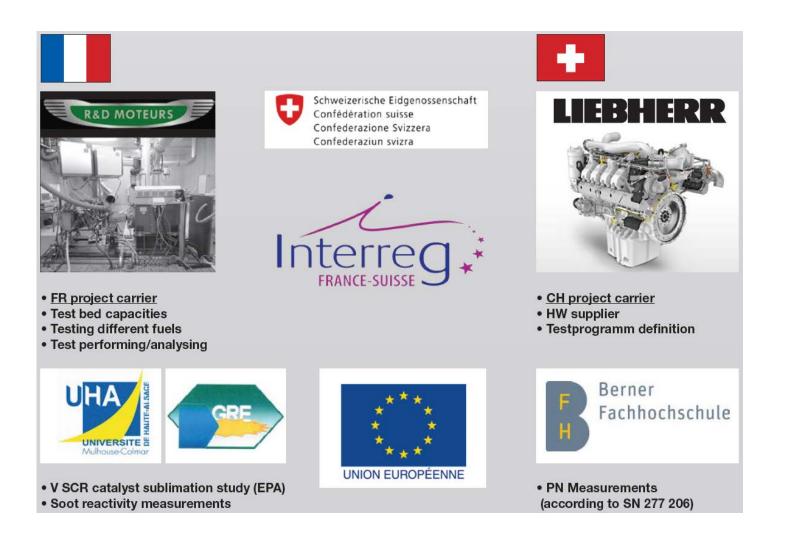

230kW


SCRoF - Tier4F + LRV

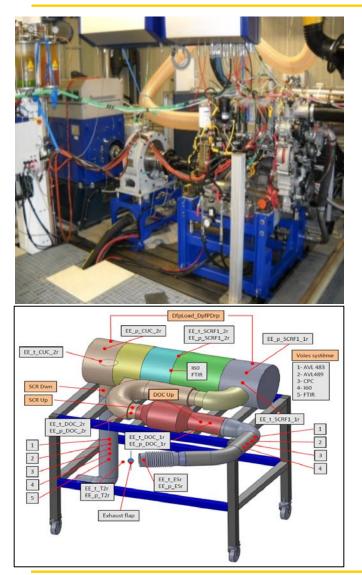
CO	HC	NOx PM		PN	
g/kWh	g/kWh	g/kWh	g/kWh	#/kWh	
0.0445	0.0056	0.2967	0.0005	6.97E+10	
0.0147	0.0018	0.3197	0.0008	1.87E+11	
0.0513	0.0058	0.2774	0.0007	5.04E+10	
0.0144	0.0017	0.2016	0.0006	9.03E+11	

SCRoF vs. SCRonly

200kW	NRTC	0.4338	0.0213	0.3275	0.0172	
2008.00	RMC	0.1639	0.0089	0.3338	0.0066	


- Compared to the SCRonly,
 - the SCRoF is able to reduce the CO of about 90%, the HC of about 75% and the PM of about 95%.
 - the SCRoF length is about 20% longer

INTERREG project


Project organization

Copyright Liebherr 2008

Test equipment

3 different fuels were considered

EN590

- Sulfure content < 10ppm</p>
- Oxidation stability «Rancimat» > 40

US-Fuel

- Sulfure content < 15ppm</p>
- Oxidation stability «Rancimat» > 40

B10RME20H

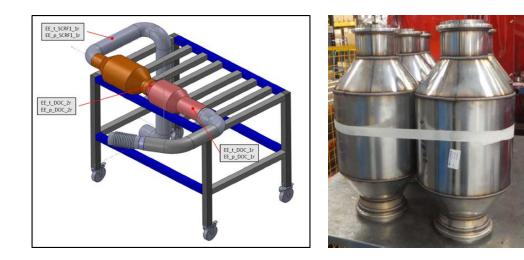
- Sulfure content < 10ppm</p>
- Oxidation stability «Rancimat» > 22.2

Fuel impact on the engine out emissions

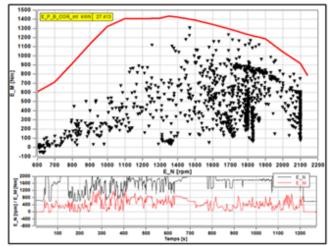
Engine out emissions

			_			
Trend of difference between EN-590 and B10, US-Fuel				Trend of difference between EN-590 and B10, US-Fuel		
Engine Map	B10	US-Fuel		NRSC	B10	US-Fuel
GA_qm_CO_raw	→	7	1 [GA_qm_CO_raw	→	7
GA_qm_CO2_raw	→	→] [GA_qm_CO2_raw	→	→
GA_qm_HC_raw	→	→] [GA_qm_HC_raw	→	→
GA_qm_NOX_raw	→	→] [GA_qm_NOX_raw	→	→
GA_qm_PM	→	7	1 [GA_qm_PM	→	7
EE_GEXHW (kg)	→	→] [EE_GEXHW (kg)	→	→
FU_qm_M	→	→] [FU_qm_M	→	→

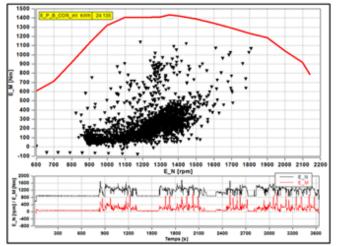
Trend of difference between EN-590 and B10, US-Fuel				
Full Load	B10	US-Fuel		
GA_qm_CO_raw	→	→		
GA_qm_CO2_raw	→	→		
GA_qm_HC_raw	→	→		
GA_qm_NOX_raw	→	→		
GA_qm_PM	→	7		
EE_GEXHW (kg)	→	→		
FU_qm_M	→	→		


- The 3 different fuels were tested with the same engine calibration
- Engine Out emissions with EN590 and B10R20H are more or less the same
- Same tendencies measured on NRSC as on NRTC \rightarrow only the NRSC results are presented
- On NRSC and NRTC as well as in the engine map, the CO and PM emissions increase significantly with the US-Fuel compared to EN590 or B10R20H

Fuel impact on the soot reactivity

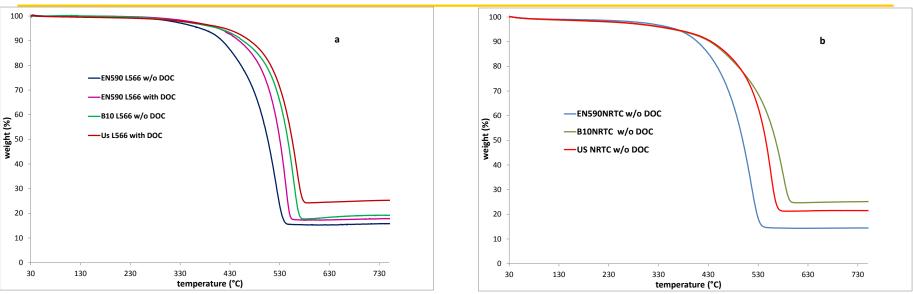


Soot collection



- Uncoated DPF substrates were used, in order to collect soot with different cycles and with different fuels
- L566 and NRTC cycles were used with and without DOC
- The tests were performed with EN590, B10R20H and US-Fuel
- After the test, the soot was removed from DPF and analyzed in the laboratory

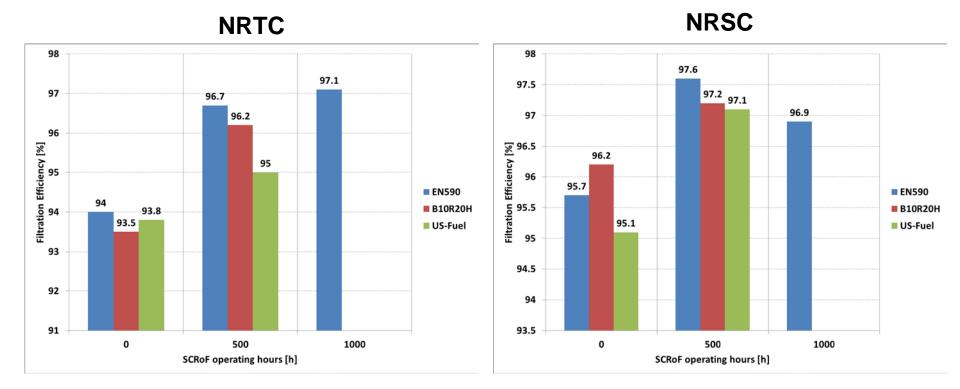
NRTC cycle



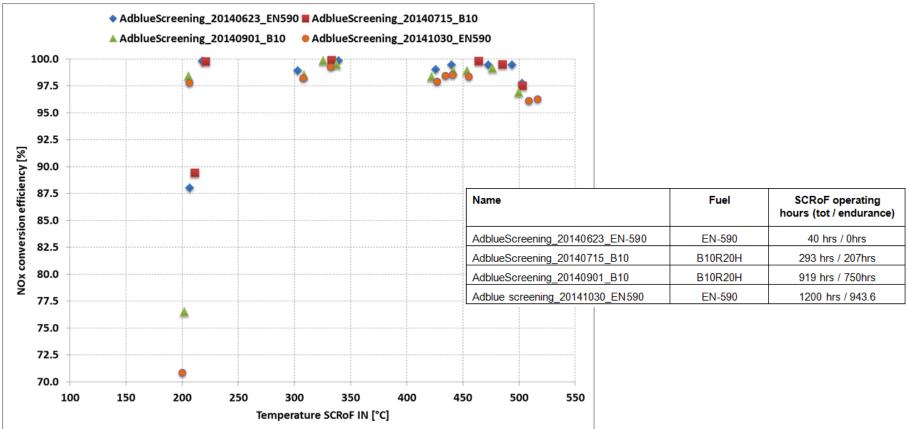
L566 cycle (Wheel Loader)

Thermogravimetric analysis

Thermogravimetric analyses (TGA) were conducted - TA Q600 microbalance.2 mg of soot is placed in an open ceramic crucible and is heated from room temperature to 900°C with a heating rate of 5°/min under an air atmosphere (gas flow of 6 NL/h). The accuracy of the mass measurement is 0.1 µg. The accuracy of the oven regulation is 0.02°C/min.


- EN590 soot is more reactive than the other soot (B10 and US)
- Thermograms obtained from EN590 soot produced during the L566 engine cycle reveals that introduction of a DOC upstream the DPF reduce soot reactivity for active oxidation
- The rate of non-combustible materials, generally attributed to a rate of ash, is important, whatever the soot sample.
- This rate of non-combustible materials varies between 14%, for soot produced using the EN590, to 29% for B10 soot produced during the NRTC cycle.

B10R20H fuel impact on SCR on Filter performance


Particulate filtration

- The filtration efficiency of the SCRoF @ 0hrs is low because the measurement was done with a fresh coated substrate, wo. degreening
- After 500hrs due to the soot cake formation, the filtration efficiency increase up to 97%
- No significant filtration efficiency changes observed between the 3 different fuels

NOx conversion efficiency

- 4x urea screening were run during the endurance (at different times) in order to characterize the NOx conversion efficiency of the system
- No significant reduction of the NOx conversion efficiency was observed after 1'000 hrs endurance test with B10R20H fuel

Summary

Engine Out emissions

- Between the fuel EN590 and B10R20H, no significant impact on the engine out emission.
- With the US-Fuel the particle mass as well as the CO increase compared to EN590 resp.
 B10R20H

Soot reactivity

- EN590 soot is more reactive than the other soot (B10 and US)
- NRTC cycle leads to quite more reactive soot than L566 cycle
- Introduction of a DOC upstream the DPF reduce soot reactivity for active oxidation

B10R20H impact on the SCR on Filter performance

- After 1'000hrs of endurance test, filtration efficiency stay at the same level
- No significant reduction of the NOx conversion efficiency was observed after 1'000 hrs endurance test with B10R20H fuel

Aknowledgment

R&D Moteur - Bruno Courtalon, Lucien Germanese

BFH-Biel - Prof. Dr. J. Czerwinski, Hervé Nauroy, Yan Zimmerli

UHA-Mulhouse - Prof. Jean Francois BRILHAC, Valérie Tschamber

THANK YOU !!

