PAUL SCHERRER INSTITUT Characterization of non-methane volatile organic compound (NMVOC) emissions from aircraft turbine engi

Dogushan Kilic^{*1}, Benjamin Brem², Felix Klein¹, Imad El-Haddad¹, Lukas Durdina², Theo Rindlisbacher³, Rujin Huang¹, Jay Slowik¹, Urs Baltensperger¹ and Andre S. H. Prevot¹

¹Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland, ²Laboratory for Advanced Analytical Technologies, Empa, 8600 Dübendorf, Switzerland, ³Federal Office of Civil Aviation, 3003 Bern, Switzerland *email: dogushan.kilic@psi.ch

Why?

- Most of the emissions at airports are coming from aircrafts [1]
- These emissions have potential to effect the air quality of an area within a radius of 16km around the airport [2].
- Aircrafts spend most of the time in planetary boundary layer at idling (Figure 1). Idling VOC emission index (EI) is highest at idling [3] • Some of the VOCs, e.g. many PAHs, known or suspected carcinogens [4]

ii) Engine type dependence

Where & How?

- Measurements were conducted at SR **Technics at Zurich Airport (Figure 2).**
- More than 300 VOCs quantified via PTR
- 7 engines & 52 tests mimicking idling, take-off, climb and approach by the setup sketched below:

I. Iaxi/iule		20.0 11111
2. Take-off	100% std. take-off thrust	0.7 min
3. Climb	85% take-off thrust	2.2 min
4. Approach	40% take-off thrust	4.0 min
Source: ICAO		

Figure 2

Figure 5

- Carbonyls were dominant functional group
- Non-Oxydized HC increased with thrust rating while Oxydized **HC decreased**

Swiss aviation-related NMVOC emission

Figure 3 Setup

NMVOC Emissions varibility i) Flight-mode/thrust dependence

• By making use of NMVOC Els, Airport Traffic Data in Switzerland and ICAO standard fuel consumption per LTO, Swiss aviation related NMVOC emission for 2010 estimated: **100 megagrams/year**

Conclusions

• El of all functional groups decrease with thrust/flight mode

Thrust (%)

Figure 4

- CFM56 7B engine NMVOC Els are given as an example (Figure 4)
- Highest NMVCO EI at Idling <6% : ≈ 1.6 g / kg fuel
- Idling thurst < 6% NMVOC EI was at least 3 times higher than **ICAO standard idling thrust level of 7%**

References

- ACRP, 2011; ACRP Report 11, ISBN: 978-0-309-11774-6
- Unal et al., 2005; Atmos. Environ., Vol: 39, 5787–5798
- Spicer et al., 1992; Journ. of Eng.
- Boffetta et al., 1997; Cancer Cau. Cont.

- Exhaust chemical composition alters with thrust/flight mode
- El estimations based on ICAO database could underestimate total

NMVOC since NMVOC EI at 3-5% is higher than 7% (ICAO thrust level accounts for idling)

Acknowledgements

- This work is supported by the Swiss Federal Office of Civil Aviation (FOCA)
- We are also grateful to SR Technics, Zurich and their test cell team.