An experimental study on effect of sulfur contents in fuel oil on particulate emission emitted from marine diesel engine

Gunfeel Moon. Heebum Park and Younwoo Nam

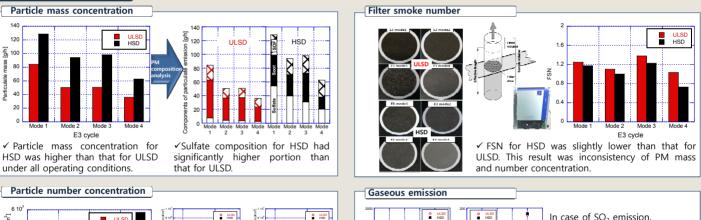
KR Test & Certification Center(TCC), Korean Register of shipping, ROK

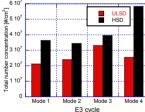
Introduction

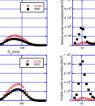
Backgrounds

The main emissions from ships are nitrogen oxides (NOx), sulfur oxides (SOx) and particulate emission, which are restricted by international maritime organization (IMO) regulations. Among these emissions, particulate emission emitted from ships was indirectly regulated by limit for sulfur contents of fuel oil. Recently, IMO is considering to adapt regulation to reduce particulate emission. This seems to be related to ice melting in arctic region with establishment of northern sea route and more stringent emission regulations.

This study can give an information developing for after-treatment system and of combustion establishing strategy for emission abatement.

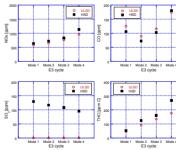

Experimental results


Experiment


A four stroke marine diesel engine for fishing trawler, tug boat and ferry was used for the engine bench tests. This engine equipped with intercooled turbocharger. It was coupled to an AC dynamometer(HD460, Horiba) to control engine speed and torque.

Experimental setup		[Fuel pr	es				
			Property	Units	ULSD	HSD	Method	
MDLT	-		Cetane Index	Rating	55.0	46.7	ISO 4264	
Engine	Smoke meter(FSN)		Density (@ 15℃)	kg/L	0.8280	0.8612	ISO 12185	
	PSD measurement		Kin. vis. (@ 40°C)	mm²/s	2.624	3.349	ISO 3104	
AC Dyno.	ation EEPS		Ash Content	%(m/m)	0.001	0.002	ISO 6245	
			Sulfur	%(m/m)	<0.030	0.34	ISO 8754	
Particulate emission	Gaseous emission		Pour Point	°C	-21	-6	ISO 3016	
PM PM Weighing	Gas FTIR analyzer		Water Content	% (V/V)	0.00	0.00	ISO 3733	
sampler composition Chamber analyzer		Experimental conditions						
			Test cycle					
			Cycle		E	3 cycle		
			Power [%]	100	75	50	25	
Item	Specifications		Speed [%]	100	91	80	63	
Engine type	4 stroke, DI, TC		Weighting Fact	or 0.2	0.5	0.15	0.15	
Rating output [kW/rpm]	403/1,800		4V158TIH					
Displacement [cc]	14,618		Power [kW]	403	302	202	101	
Cyl. number- bore x stroke [mm]	8 - 128 x 142		Speed [rpm]	1,800	1,638	1,440	1,134	
Compression ratio	14.3 : 1		Torque [N·m]	2,139	1,763	1,337	849	
Fuel consumption [Lit / h]	97		Mode	1	2	3	4	

ULSD HSD


Total PM number concentration for HSD was higher than that for ULSD. In case of high sulfur diesel fuel, nucleation mode particles(<50 nm) was significantly higher than accumulation mode particles.

Summary

✓ PM mass concentration for high sulfur diesel was higher than that for ultra low sulfur diesel. Also, total PM number concentration for HSD was higher than that for ULSD. On the other hand, filter smoke number with fuel sulfur content was contrary to the tendency of other concentrations.

✓ Conclusively, comprehensive analysis of PM with various sulfur contents of fuel or alternative fuel is necessary for better characterization due to a possibility of inconsistency result with measurement method.

Acknowledgements: This study has been funded by the Ministry of Oceans and Fisheries of KOREA. Also this study is conducting in government project "Quantitative assessment for PM&BC to climate change and development of reduction technology for PM, BC from ships.

In case of SO₂ emission,

✓ The significant difference of SOx emission measured by FTIR represented with fuel sulfur contents.

√ The emission for HSD decreased with decrease of engine power(Mode 1 \rightarrow 4) and this caused by the decrease of fuel consumption rate.

KR TCC(Test & Certification center)

Further information; gmoon@krs.co.kr