Semi-Volatile Nanoparticle Emissions From Diesel Low Temperature Combustion Modes

- <u>19th ETH Conference on Combustion Generated Nanoparticles</u> 29.6.2015
- W. Northrop, G. Lucachick; Univ. Minnesota
- S. Curran, J. Storey, V. Prikhodko; ORNL

Diesel Low Temperature Combustion

Advantages:

- Low soot and NO_X emissions
- Reduced heat loss = higher efficiency

• Disadvantages:

- Limited operating range
- High HC/CO emissions

- Premixed Charge Comp. Ign. (PCCI)
 - Single fuel
- Reactivity Controlled Comp. Ign. (RCCI)
 - Dual fuel

Particle Motivation

• Hypothesis:

- Gas-to-particle conversion controlled by saturation ratio
- At low engine exhaust temperature and high HC concentration, HC slip from aftertreatment
- HC partial pressure in primary exhaust increases
- Nucleation and growth of semivolatiles occurs
- Semi-volatile particles regulated through mass standards in US
- Health effects being studied

Lucachick, G., et al. SAE J. Engines 7, (2014).

Experimental Setup

- Turbocharged DI-Diesel Engines
 - PCCI GM 2.0 liter EURO V ~
 - RCCI GM 1.9 liter EURO IV*
- Emissions Instruments
 - AVL i60 FTIR
 - AVL Microsoot -
 - TSI SMPS
- Fuel
 - ULSD, non-oxygenated
 - Cert. gasoline, non-oxygenated
- * Experiments conducted at ORNL

UNIVERSITY OF MINNESOTA Driven to Discover^{ss}

Particle Measurement

- Simulate primary dilution
- Understand particle volatility
- Catalytic stripper¹ solid/volatile fraction
- Evaporative particle generator

1. Abdul-Khalek, SAE Tech. Paper, 950236 (1995).

2. Abdul-Khalek, SAE Tech. Paper, 1999-01-1142 (1999).

3. Sakurai, et al. Environ. Sci. Technol. 37, 5487–5495 (2003).

Tandem Differential Mobility Analyzer with Thermal Conditioning³

Comparison of LTC and CDC Emissions Engine-Out Results

emissions...

...but increases HC Emissions

LTC particles highly sensitive to dilution temperature

- RCCI and PCCI particles similar volatility
- Particle number decreases with T_{dilution}

LTC particles have similar volatility range to $C_{28} - C_{32}$ alkanes

- Evaporative TDMA
 - 40 nm particles
 - $T_{dilution} = 27 \text{ deg C}$
- Compared to evaporative particle generator
 - Alkanes similar to lube oil
 - Engine particles consist of many species
 - Decreasing volatility with size

TDMA Particle Shrinkage vs. Temperature 2 bar BMEP Engine Load, ~ 40 nm particles selected 100 TDMA Volume Fraction Remaining (%) – RCCI -PCCI 80 C₃₂ 60 C₂₈ 40 20 0 20 60 80 0 120 40 100 140 Thermal Conditioning Temperature (deg C)

Saturation Ratio Implies LTC Particles Unlikely to Nucleate Homogeneously

- Saturation ratios estimated¹
 - Consist of pure alkanes
 - Particle volume from experimental RCCI condition
- Critical saturation ratios²
- Further evidence of low volatility small particles
 - Sulfate nuclei
 - Non-volatile oxygenates

- 1. Chickos, J. S., & Hanshaw, W. (2004). J. of Chem. & Eng. Data, 49(1), 77-85.
- 2. Rusyniak, M., et al. (2001). Vapor phase homogeneous nucleation of higher alkanes: dodecane, hexadecane, and octadecane. 1. Critical supersaturation and nucleation rate measurements. J. Phys. Chem. B, 105(47), 11866-11872.

DEPARTMENT OF MECHANICA Engineering

DOC catalyst deactivates over a long period running in LTC mode

- EURO V aftertreatment
 - Close-coupled DOC-DPF
- Test performed after DPF regeneration
 - 2 bar BMEP PCCI Condition
 - HCs from DOC should form particles after dilution

Aftertreatment eliminates >99% of LTC particles even with DOC partially deactivated

- Time = 100 s after regen.
- DOC not fully operational
- DPF very effective
 - Adsorption on filter/soot cake
 - Removal of nucleation sites

Sampling Location	Temperature (°C)
Engine-Out	189
DOC-Out	192
DPF-Out	NA
Catalytic Stripper	350

Lucachick, G., et al. SAE J. Engines 7, (2015).

Summary

- PM from LTC is mostly semi-volatile
 - Highly dependent on dilution conditions
- Dual fuel RCCI and single fuel PCCI modes have largely similar particle size distributions and dilution sensitivity
- Semi-volatiles not predicted to nucleate homogeneously
 Gas to particle conversion on highly non-volatile species
- LTC modes still require aftertreatment
- DPF effectively prohibits semi-volatile particles
 - Either from adsorption of HC or nucleation site removal
 - New conditions with DPF slip being explored

Questions?

<u>Funding Acknowledgement:</u> Research Gift from General Motors and University of Minnesota

<u>Contact:</u> W. Northrop University of Minnesota wnorthro@umn.edu

