

Optimization of silver particle number size distributions from a homogenous nucleation furnace

- Needs for EECPC calibration
- Criteria of calibration aerosol
 - Nucleation furnaces
 - Results

WG 3.23: Aerosol and Particle Diagnostics

<u>Andreas Nowak</u>, Johannes Rosahl, Detlef Bergmann Arne Kuntze, Margit Hildebrandt, Egbert Buhr, Volker Ebert

30.06.2015 19th ETH-Conference on Combustion Generated Nanoparticles

EECPC calibration needs

- Manufacture independent EECPC calibration
 Preferably with traceable calibration chain
- Primary and secondary PN standard
- A suitable aerosol EECPC calibration
 - \rightarrow Comparable to engine exhaust
 - → Metrological Uncertainties
- Previous work@PTB: EMRP-project, ENV02, PartEmission, 2011-2014)
 - Goals: → Determination and Validation of primary and secondary method for PN

→ Development of suitable calibration aerosol/setup

ENV02-Project Results

- Aerosol criteria:
 - highly monodisperse
 - single charge
 - spherical morphology
 - tunable diameter size between 10 to 100 nm
 - sufficient particle number concentration, up to 10⁵ cm⁻³
 - highly thermal stability, up to 350 °C
- Criteria according to ISO 27891
- Promising aerosol candidate: silver nanoparticles

\rightarrow Homogenous nucleation process

Nucleation furnace: History

simple tube furnace to generate silver particles (Scheibel and Porstendörfer*)

*Journal of Aerosol Science, Volume 14, Issue 2, Pages 113-126 (1983)

- Findings:
 - condensation dominates nucleation process in colder part of furnace
 - particles < 50 nm with high concentration (10⁷), size down to 2 nm
 - monomodal size distributions with narrow distributions (σ ~1.3-2.0)
 - particles above 30 nm: have tendency to be non-spherical particle

PB Nucleation furnace: Optimization at PTB

Goals:

- larger particles \rightarrow increase of residence time \rightarrow larger furnace with 3 heating zones
- optimization flow scheme and T gradient \rightarrow implementation of heating shields:
 - inlet shield with nozzle (different sizes)
 - outlet shield with hoper
- minimization of conglomerates \rightarrow water cooling flange at end of tube \rightarrow shock cooling

PB PNSD measurements: Experimental setup

- Carrier flow: 0.8 2.0 l/min (N₂)
- Dilution flow: 0.8 2.0 l/min (N₂)
- UDMA (hauke short) flow: 1.5 : 15 l/min
- Scan range: 3 93 nm, stepwise
- UCPC (TSI 3776) at high flow mode

\rightarrow Tests for different flow ratios and configurations

PTB PNSD results I: Flow effects

Constant nozzle (1mm) and same silver loading at one temperature

→Increasing PNC with higher flows → Indication for an optimal flow scheme
 → monomodal size distribution @ 1.6 l/min

PTB PNSD results II: Different shield configurations

Constant nozzle (1mm) at one temperature and one flow ratio for carrier and dilution flow (1:1)

- w/o heat shield \rightarrow less PNC
- Both heat shields → smaller silver particles, sharp peak in lower size range
- Only inlet heat shield with nozzle → higher PNC
- > Sintering up to 650 °C \rightarrow no influence for PNSD
- > For further studies \rightarrow only inlet heating shield with different nozzle sizes

PB PNSD results: Nozzle sizes

For different nozzle sizes at one flow ratio (1:1) from 960 °C up to 1300 °C

High PNC (> 10⁵ cm⁻³) above 15 nm

- 2 mm nozzle: mean mobility diameter up to 65 nm, but broad size distribution
- > 2 mm nozzle well suited for further experiments

PB Results IV: Particle Shape

STEM pictures for different types of tube furnaces

Old furnace construction comparable to Scheibel and Porstendörfer

New tube furnace at PTB

Without sintering mostly spherical particles

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Conclusion

- Optimization of tube furnace and homogenous nucleation through heath shields, different nozzles and flow control
 - → larger particle sizes and suitable PNC for Ag-NP

Only spherical particle were generated

→ Without required sintering for Ag-NP

- For ISO 27891
 - \rightarrow Entire particle size range
 - → Sufficient PNC

- Further increasing of size range to larger sizes above 100 nm
 Heterogeneous silver nucleation with two furnaces
- Minimizing charge correction factors above 60 nm

 \rightarrow 2nd UDMPS with unipolar charging

 \rightarrow Increasing of PNC for monodisperse fraction

- → Communicate results (ENV02) into the legislative community (PMP/ISO)
- → Establish EECPC calibration service at PTB in 2016

Thank you very much for your attention! → Questions?

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Bundesallee 100

38116 Braunschweig

Dr. Andreas Nowak Email: andreas.nowak@ptb.de www.ptb.de