# Morphology and Crystalline Structures of Engine-like Soot from KATECH's Soot Generator

# Heeje Seong<sup>(1)</sup>, Seungmok Choi<sup>(1)</sup>, Chun Beom Lee<sup>(2),(3)</sup> and Kwangchul Oh<sup>(2)</sup>

(1) Argonne National Laboratory, USA (2) Korea Automotive Technology Institute (KATECH), Korea (3) Dalum Technology Inc., Korea

### Relevance and Objective

- Particle generators are useful devices
- Calibrations of soot mass and particle sizes
- Convenient tests for engine applications: aftertreatment systems, soot sensor and more
- Particulate morphology and properties are sensitive to operating conditions.
- Detailed information of morphology and properties helps understand how close these particles resemble engine particulates.
- Morphology, nanostructures and crystalline structures of particulates are evaluated, which were produced from by using a KATECH diesel-aerosol particle generator at various dilution flow rates.



Equipment operating variables

- Furnace temperature, carrier gas flow rate and dilution gas flow rate
- Morphology study
- Equipment operation:
- furnace 1300°C, fuel flow rate 0 l/min, dilution gas flow rate 0  $^{\sim}$  3.5 l/min Measurements
- Transmission electron microscope (TEM) & Raman microscope

## Result<u>s</u>

#### Effects of furnace temperature



With increased furnace temperature,

- Particle number increases

- Particle grows from young nucleated particles to matured aggregated particles.

#### Effects of dilution flow rate



TEM images taken at 15,000X



TEM images taken at 100,000X









TEM images taken at 600,000X

With decreased dilution flow rate,

- Particle grows from young nucleated particles to matured aggregated particles.
  Primary particles become spherical.
- Printary particles become spherical.
- Nanostructures tend to be more graphite-like from amorphous structures.
  Nanostructures show fringe patterns comparable to those of engine soot.



□ Primaries and aggregates shift to smaller sizes with dilution, resulted from delayed soot formation.

□ Aggregate sizes from TEM analysis appear to be larger than those from ELPI.



Aggregates become more compact with dilution.
 Particle geometry is in the range of that of light-duty engine soot.



As expected, carbon crystallites tend to less ordered with dilution.
 More organics & GDI soot-like structures, rather than diesel soot structures.

#### Conclusion

□ With controlling furnace temperature and dilution gas flow rate, soot particles produced from KATECH's soot generator are quite comparable to engine soot particles in terms of nanostructure, primary & aggregate sizes, fractal geometry and carbon crystalline structure.

#### Acknowledgement

 Support: U.S. Department of Energy, Office of Vehicle Technologies, and Korea Automotive Technology Institute (KATECH) – Contract No. C1000301
 Instrument use: Center for Nanoscale Materials supported by U.S. Department of Energy, Office of Science – Contract No. DE-AC02-06CH11357

> DALUM TECHNOLOGY

# Contact

Heeje Seong: <u>hseong@anl.gov</u> Chun Beom Lee: <u>cblee@katech.re.kr</u>