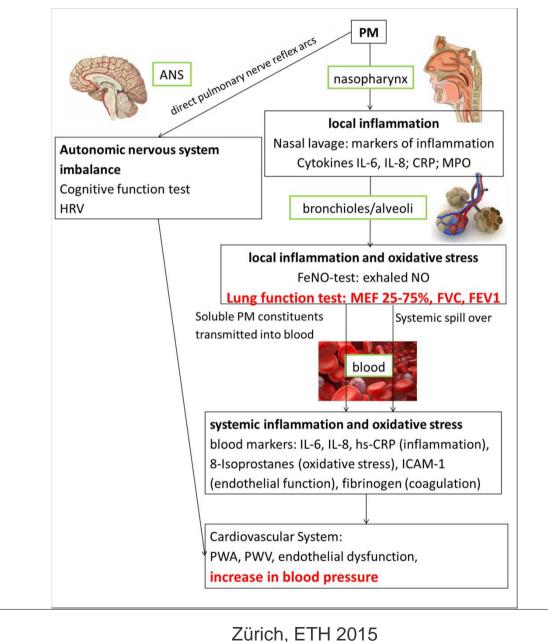
Controlled human exposure to fine and ultrafine particles from indoor sources – changes in lung function and blood pressure

Vanessa Soppa Zürich, 01.07.2015 19. ETH-Conference on Combustion Generated Nanoparticles


EPIA: Effects of Particles from Indoor Activities

Background

- Fine particulate matter (PM) is linked to cardiovascular diseases, allergic & inflammatory conditions of the lung
- To date, most studies investigate **ambient** particles
- In the developed world, humans spend most of their time **indoors**
- Several indoor activities emit high amounts of fine and ultrafine particles

Hypothesized biological pathways of particulate matter

Lnibniz

LEIBNIZ-INSTITUT FÜR UMWELT-MEDIZINISCHE

FORSCHUNG

Objective

• To investigate whether exposure to particles from indoor activities leads to health-related changes in healthy volunteers

EPIA: Design

- Sham-controlled cross-over exposure study with 55 healthy volunteers
- Temperature-controlled expsoure chamber
- Two hour exposure
 - Candles (C)

Libri

- Toasting bread (TB)
- Frying sausages (FS)
- Sham exposure: "Air refresher" (Room Air)
- Exposure on the same day and time of the week at least
 2 weeks apart
 - 2 weeks apart

Exposure Measurements

Continuous measurements during each exposure session Calculation of personal 2h-exposure during session

- **Size-specific particle number** concentration PNC (FMPS and APS)
- Particle mass concentrations for PM₁, PM_{2.5}, PM₁₀, (FMPS and gravimetric)
- Alveolar deposited surface area concentration (NSAM)
- Chemical composition (AMS)
- EC/OC Analyser
- CO Monitor
- Particle collection for tox

LEIBNIZ-INSTITUT FÜR UMWELT-MEDIZINISCHE FORSCHUNG

Health Outcomes

	Pre- exposure (baseline)	During exposure	Directly after exposure	2 h after exposure	4 h after exposure	24 h after exposure
Diary	Х	х	х	Х	X	Х
Nasal lavage	х			х		х
FeNO-Test	х			Х		X
Blood draw	х			х		х
Blood pressure	x	X	X	X	X	X
Lung function	x				X	X
PWA	х		Х	Х	Х	Х
PWV and HRV	х		х			х
PEG-Board-Test	Х					

Lung function: Spirometry (ndd Easy One) Blood pressure: automatic ambulatory blood pressure monitor (M10-IT; Omron Healthcare GmbH)

Libri

Zürich, ETH 2015

Statistical Analysis

- Linear mixed regression analysis with random participant intercept
- Separate analysis for each exposure
- Independent variables: personal cumulative exposure to the particle metrics size-specific particle mass, particle number and surface area during the exposure sessions
- Dependent variable: intra-individual difference to t0
- Interaction term: exposure*time point
- Covariates: age, height, sex, temperature, humidity, travel time and means of transportation (full model).

Results – Study population (N=55)

Characteristic	Measure
Age, years (mean±SD)	33.0 (16.6)
Born in Germany, n (%)	35 (64.8)
Male, n (%)	28 (50.9)
Weight, kg (mean±SD)	72.6 (14.0)
Height, cm (mean±SD)	174.3 (9.2)
Economic activity, n (%)	
High School Graduation	42 (79.3)
Employed	25 (47.2)
Smoking status, n (%)	
Ex-smoker	3 (5.6)
Never-smoker	51 (94.4)
History of allergy, n (%)	
Allergy	17 (32.7)
Transport mode, n (%)	
Car	106 (40.3)
Public transportation	145 (55.1)
On foot	2 (0.8)

Lnibniz-

IUF

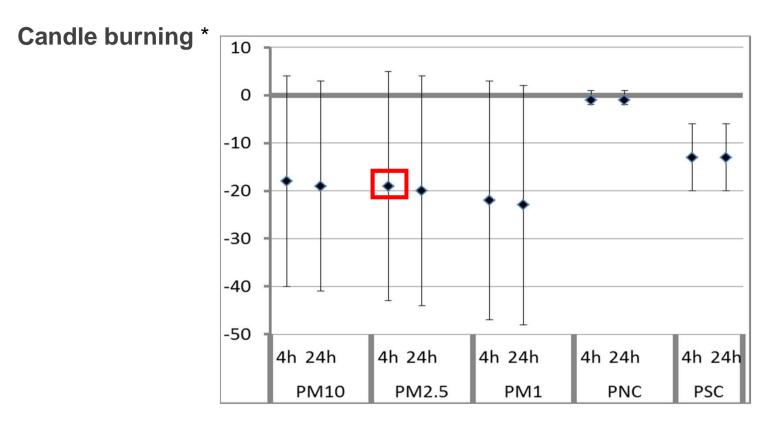
Exposure characterization

	Room Air			
ΡΜ ₁₀ [μg/m³]	6.2	56 - 84	87 - 126	100 – 279
ΡΜ _{2.5} [μg/m³]	4.7	53 - 81	63 - 82	84 – 235
PM ₁ [µg/m³]	3.2	50 – 79	38 – 80	71 - 208
PNC UFP [10 ³ /ml]	3.0	1,610 – 2,670	900 – 1,560	310 - 610
PSC [µm²/cm³]	23	2,201 – 3,840	1,769 – 3,780	1,325 – 3,456
? `A. :				

Chemical Composition

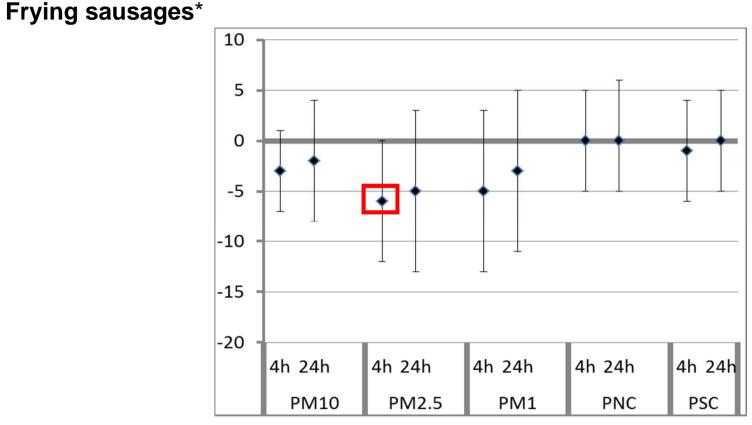
- Candle burning:
 - Gases: Acetaldehydes, aceton < 1 ppm CO < detection limit
 - Particles: Organic hydrocarbons, Nitrates
 OC >> EC (7%)
- Frying sausages:
 - Gases: Acetaldehydes, propanoic acid ~ 25 ppm
 - Particles: Organic hydrocarbons,

OC


– Toasting bread:

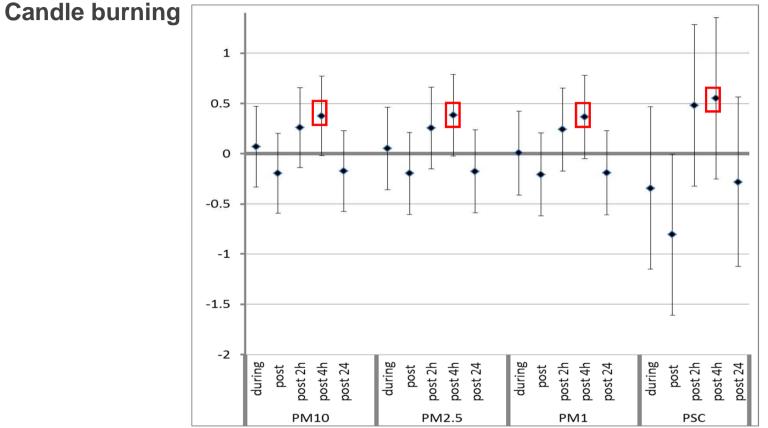
nibni

- Gases: Ethanol, Acetaldehydes << 1 ppm
- Particles: Organic hydrocarbons OC (EC < 1%)


Lung function (FEV_1)

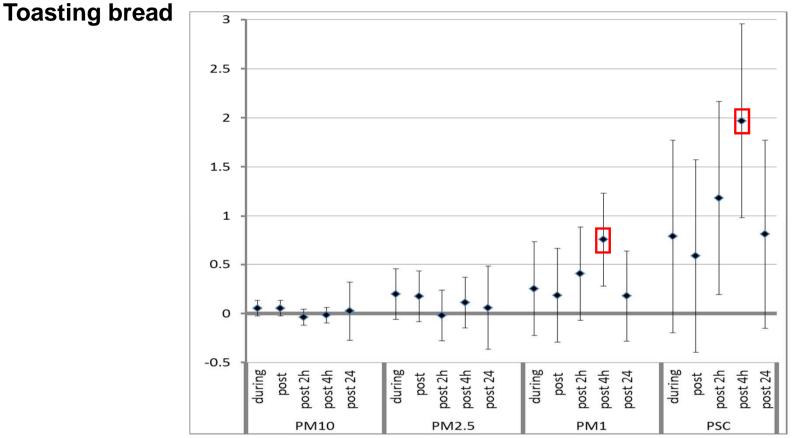
- Mean effect estimates & 95% Confidence Interval (CI)
- Associated for changes (difference) with an increase in particulate metrics post 4 h and 24 h post exposure
- Associated for different exposure scenarios for PMC, PSC and PNC
- Changes refer to an increase of 10 μg/m³ (PMC), 100 μm²/cm³ (PSC) and 10,000 number/cm³ (PNC)

*Adjusted for source


Lung function (FEV_1)

- Mean effect estimates & 95% Confidence Interval (CI)
- Associated for changes (difference) with an increase in particulate metrics post 4 h and 24 h post exposure
- Associated for different exposure scenarios for PMC, PSC and PNC
- Changes refer to an increase of 10 μg/m³ (PMC), 100 μm²/cm³ (PSC) and 10,000 number/cm³ (PNC)

*Adjusted for source


Blood pressure (systolic BP)

- Mean effect estimates & 95% Confidence Interval (CI)
- Associated for changes (difference) with an increase in particulate metrics during, post, post 2 h, post 4 h and 24 h post exposure
- Associated for different exposure scenarios for PMC and PSC
- Changes refer to an increase of 10 μ g/m³ (PMC) and 100 μ m²/cm³ (PSC)

Blood pressure (systolic BP)

- Mean effect estimates & 95% Confidence Interval (CI)
- Associated for changes (difference) with an increase in particulate metrics during, post, post 2 h, post 4 h and 24 h post exposure
- Associated for different exposure scenarios for PMC and PSC
- Changes refer to an increase of 10 μ g/m³ (PMC), and 100 μ m²/cm³ (PSC)

Summary and Discussion

- Use of novel metric "surface area"
- PSC was dominated by particles between 100-1000 nm in diameter
- Particles mostly organic hydrocarbons, little soot
- Effects differed across sources:
 - Candle burning & frying sausages showed clearest effects on lung function, associations strongest for particle mass concentration
 - After candle burning and toasting bread elevated blood pressure
 - Associations strongest for particle mass concentration and particle surface concentration, in particular 2 & 4 hours after exposure
 - Stronger effects for systolic blood pressure

Limitations

- Two-hour exposure short, but exposures comparatively high (higher than in real-life daily circumstances)
 - Nevertheless well below the concentrations that are typically present in controlled exposure studies of outdoor air pollutants (PMC: 200-300 g/m³ PM2.5 (Cosselman et al 2012; Mills et al 2007).
- Blinding not possible
- Participants healthy, no vulnerable populations included (i.e. asthmatics)

Conclusions

- Examined sources showed large differences regarding their mass-, number- and surface-concentration as well as their chemical composition
- Two-hour exposures to high concentrations of fine particles from common indoor sources are variably associated with small decreases in lung function and increases in arterial blood pressure in healthy adults
- The effects of the examined sources varied, possibly due to the physical and chemical composition of the emitted particles > general transfer to sources of indoor particles is not possible
- The observed short-term effects are important because they point to the activation of similar biological mechanisms as short-term exposures to outdoor particles

EORSCHUNG

Thanks to ...

- Barbara Hoffmann
- Gudrun Weinmayr
- Frauke Hennig
- Roel Schins
- Bryan Hellack
- Ulrich Quass,

Libri

- Heinz Kaminski
- Thomas Kuhlbusch

FÜR UMWELT-MEDIZINISCHE FORSCHUNG

Zürich, ETH 2015