Using SCR on Filter Technology for downsizing future HDD On- and Off road Systems for Euro VI and Stage V

19th ETH-Conference on Combustion Gerenrated Nanoparticles

June 28, 2015

going the extra mile

Outlook

- Current situation / demand for next generation
- Downsizing concept & components test in 9"x10" size, stationary
- Transient tests: Inline test setup and test in full system
- Optimization
- Summary

Current Situation

HDD On-Road:

- EURO VI is established on the market
- Combination of DPF & SCR can be found using Cu-, Fe-, or Vanadia based SCR technologies
- Active and passive regenerated DPF
- 2nd generation EURO VI under development

Off-Road:

- Stage IV for >130kW introduced on the market
- Main solution is SCR only Vanadia the preferred SCR catalyst
- Packaging is challenging

Next Generation

- Fuel efficiency improvements in Diesel engine developments lead to lower exhaust gas temperatures
 - ► Improvement in system performance needed (low temperature SCR → close coupled 4-way system / ammonia distribution...)
- Off-road Stage V regulation
 - → Integration of particle filtration in existing Off-Road ATS concepts
 - Packaging and total system costs become more and more important
 - Downsizing by usage of SCR on Filter

Downsizing strategy HDD

Downsize Concept with F-SCR scalable

Components:

- Metallic substrates for the DOC and the SCR/ASC
- High porous SiC substrate for the F-SCR
- Various SCR catalysts and their combinations in the F-SCR and SCR/ASC Volume ratio F-SCR: SCR/ASC 2:1

EcoCat[®] substrates with selflocking design for DOC & SCR

- Features groove system for substrate locking and improved flow dynamics.
- 100 % stainless steel (1.4767/1.4725 substrate, FeCrAl).
- Easy to integrate into the exhaust system.
- Improved heat and mass transfer rate, low thermal inertia.
- High resistance against thermal and mechanical shocks.

going the extra mile

DOC

Pt vs. Pt:Pd 4:1 - 30g/cft

Hydothermal aged at 800°C

F-SCR - substrate

 $DiSiC_{HP}$ with 65% porosity – 20µm pore size Segments size: 78mm edge length

Current cell design: 200/16 Future: 200/12 & 300/10

DiSiC_{HP}→ SAE 2014-01-1484 ETH conference 2014

F-SCR – catalyst types

Catalyst types

catalyst	SCR activity	S- tolerance	Temp. stability	N ₂ O formation	cost	
Mixed metal oxide Ce/Zr/Nb MMO	T ₅₀ : ~ 250°C ≥ 90%: ~300°C _500/550°C	very high	up to 850°C	no	+	
Fe-β-zeolite	T ₅₀ : 300°C ≥ 90%: 400°C – 650°C	high	up to 850°C	no	-	
Cu-zeolite	T ₅₀ : 180°C ≥ 95%: 250°C – 400°C	low	up to 800°C	Yes, but low	-	

SAE 2014-01-1484 & ETH conference 2014

going the extra mile

this presentation

F-SCR – catalyst coatings

Cu-zeolite

DeNOx based on synthetic gas bench on 1''x3'' filter samples back pressure on 78mmx78mmx304mm segments in 100m³/h cold flow

F-SCR – catalyst coatings

MMO + Cu-zeolite

DeNOx based on synthetic gas bench on 1"x3" filter samples aged = hydrothermal 700°C, 20 h back pressure on 78mmx78mmx304mm segments in 100m³/h cold flow

Stationary tests

F-SCR_1: Mixed Metal Oxide with Cu-Zeolite, 1:1

DOC 2 - 1.9L	FSCR - 10,4L
200cpsi	DiSiC-HP 9" x 10"
25g/cft Pt	MMO + Cu-zeolite 120g/l

F-SCR_2: Cu-Zeolite

DOC 2 - 1.9L	FSCR - 10,4L
200cpsi	DiSiC-HP 9" x 10"
25g/cft Pt	Cu-zeolite 120g/l

System 1

DOC 2 - 1.9L	FSCR - 10,4L	SCR - 4.1L
200cpsi	DiSiC-HP 9" x 10"	350cpsi - 9.5" x 90mm length
25g/cft Pt	MMO + Cu-zeolite	Cu-zeolite

System 2

DOC 2 - 1.9L	FSCR - 10,4L	SCR - 4.1L
200cpsi	DiSiC-HP 9" x 10"	350cpsi - 9.5" x 90mm length
25g/cft Pt	Cu-zeolite	Cu-zeolite

Stationary SCR test setup

Engine experiments used for development purposes

- Agco Power 4.9 L diesel engine
- Low-S diesel fuel (<10 ppm S)</p>
- Bosch/AGCO POWER air-free urea dosing system with standard Adblue solution
- Steady engine points with urea/NO_x variations to detect SCR operation window
- α experiments: concentrations as a function of urea (NH₃)/NO_X
- Criteria NO_X conversion: NO_X efficiency corresponding to 20ppm NH₃

Mode	Speed rpm	Load Nm	Flow rate m³/h (NTP)	Temperature °C	3+2 exp.	6+2 exp.
1	2100	670	600	530	х	x
2	2100	503	570	450	х	X
3	2100	335	500	350	Х	X
4	2100	67	338	190		
5	1500	830	461	480		X
6	1500	623	404	400		Х
7	1500	415	326	340		Х
8 idle	850	16	102	130		
9 extra	1500	200	230	290	Х	X
10 extra	1500	140	220	250	Х	х

Table 1. Engine conditions in SCR experiments (ISO 8178 points).

SCR efficiency- stationary

Impact of SCR on passive

regeneration

F-SCR 1

Impact soot load on DeNOx F-SCR_1 soot load: 5g/I

Component testing in full size

Liebherr D936 10.5 L

dinex

Components for inline tests

DOC

12" diameter, 3" length Volume 5.5 L catalyst: KDN1.3 Pt only

substrate:

metallic 350cpsi/50µm

F-SCR

12" diameter, 12" length Volume 22 L SCR catalyst: MMO + Cu-zeolite 1:1 substrate:

SiC 65%, 200cpsi/16mil

SCR

12" diameter, 3.5" length, 2x Volume 13 L SCR catalyst: Cu-zeolite

substrate: metallic 350cpsi/50µm

Load point B: 310°C, 1100kg/h, ANR=0.7

All:	70	%
UI:	0,98	

Results SCR-Efficiency

Setup	ESC	WHTC	NRTC
DOC + F-SCR	79%	74%	78%
DOC+F-SCR+SCR3.5"	89%	79%	87%
DOC+F-SCR+SCR7"	95%	90%	94%

Corresponding first system concept HDD – 12I

DOC	F-SCR	SCR
9" x 8.3"	12''x12''	12''X7''
8.6 l	22 I	13 I
200cpsi	200cpsi	350cpsi
Pt only	120g/l MMO+Cu-Z	110g/l Cu-Z

Engine: OM460 12.7 L high NOx 8.8g/kWh

Cycle	NO _x	PN
ESC	94,0	99,8
ETC	97,5	99,8
NRTC	97,5	99,4
WHTC	91,0	99,9

Summary and outlook

- Components for a downsized system for HDD developed – basic system design is DOC – F-SCR – SCR+ASC, Volume F-SCR/SCR 2:1
- SCR on DPF based on MMO+Cu-Z mixture
- ▶ PGM composition of DOC need to be adjusted for high NO2 formation → compensate DeNOx impact on passive regenetarion
- Additional SCR to compensate impact by high soot load on DeNOx
- First test in downsized system showed DeNOx up to 97% - further optimization for Euro VI

Thank you for

your attention

going the extra mile