

**UNIVERSITY** 

AUSTRALIA

OF WOLLONGONG

Are Respiratory Protection Standards Protecting Worker Health Against Ultrafine Diesel Particulate Matter Emissions? An Australian Perspective. Burton, Kerrie A., Whitelaw, Jane L., Jones, Alison L., Davies, Brian

## Background

- Respiratory protective devices are commonly used to protect workers from exposure to ultrafine diesel particulate matter.
- Diesel engine emissions are known to cause lung • cancer, cardiovascular and irritant effects.
- Current standards to evaluate penetration through • respirator filter media do not consider ultrafine diesel particles.

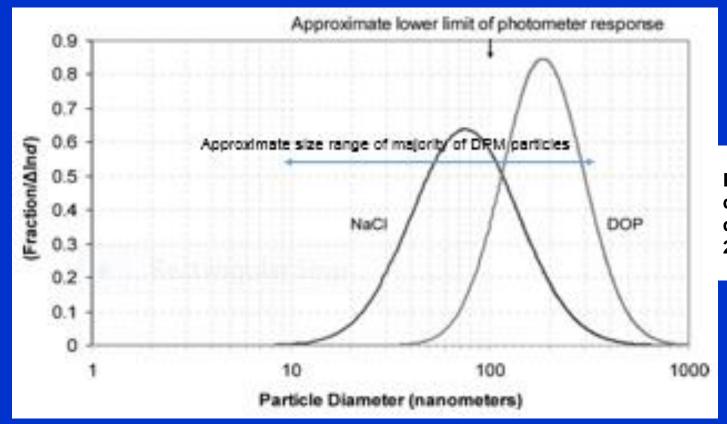



Figure 1: Challenge aerosol particle size distributions (by count) and photometer limit of detection (Adapted From Eninger, Honda et al

## Preliminary Results for an example P2 certified filter (AS/NZS1716)

- Pre Filter EC concentration was set at 1 mg/m<sup>3</sup>, the rated protection factor of the filter (M=1.6mg/m<sup>3</sup>, SD=0.5, 95% UCL=2.3, n=5). Flow rate through filter was 95L/min (the upper limit specified in AS/NZS1716).
- Elemental Carbon penetration averaged 1.1% (SD=0.3, 95% UCL=1.5, n=5).
- Penetration by particle number count (25.5-560nm) averaged 3.1% (SD=0.5, 95%) UCL=3.7, n=5).
- AS/NZS1716 specifies that penetration for P2 filters (measured using NaCl as the challenge aerosol) should not exceed 6%.

|     |   |  | T |
|-----|---|--|---|
|     |   |  | 1 |
|     |   |  | 1 |
|     |   |  | 1 |
| 40- |   |  | 1 |
|     | - |  | 1 |
| 40- | _ |  |   |

## **Objective**

Evaluate penetration of diesel emissions through a range of commonly used respirators (8 filter models) by:

- mass of Elemental Carbon (EC) and
- particle number count.  $\bullet$

# Method

- Emissions from a Detroit D706 LTE diesel engine were fed into an experimental chamber
- The respirator filters were mounted inside the chamber.





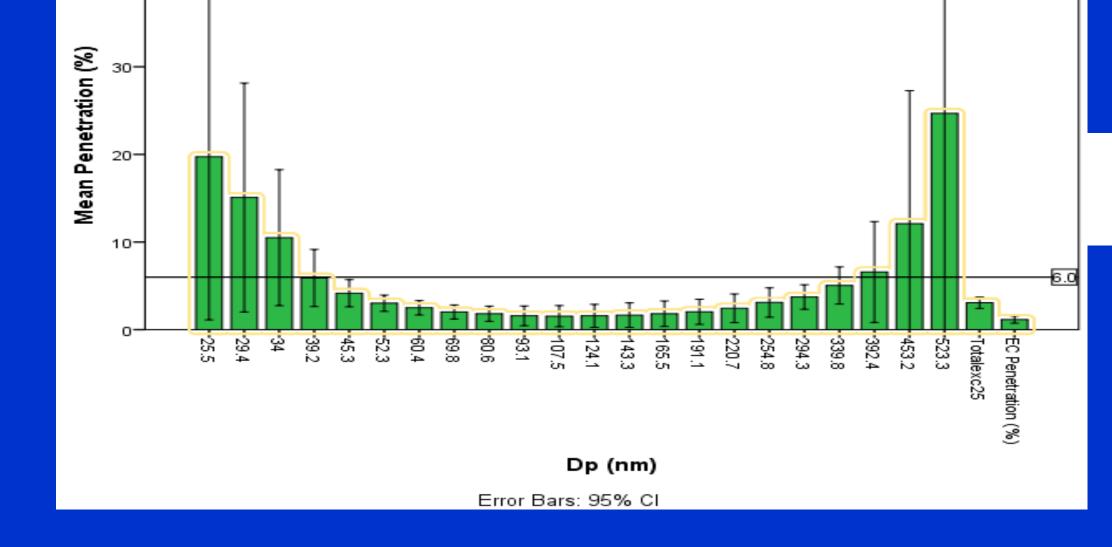
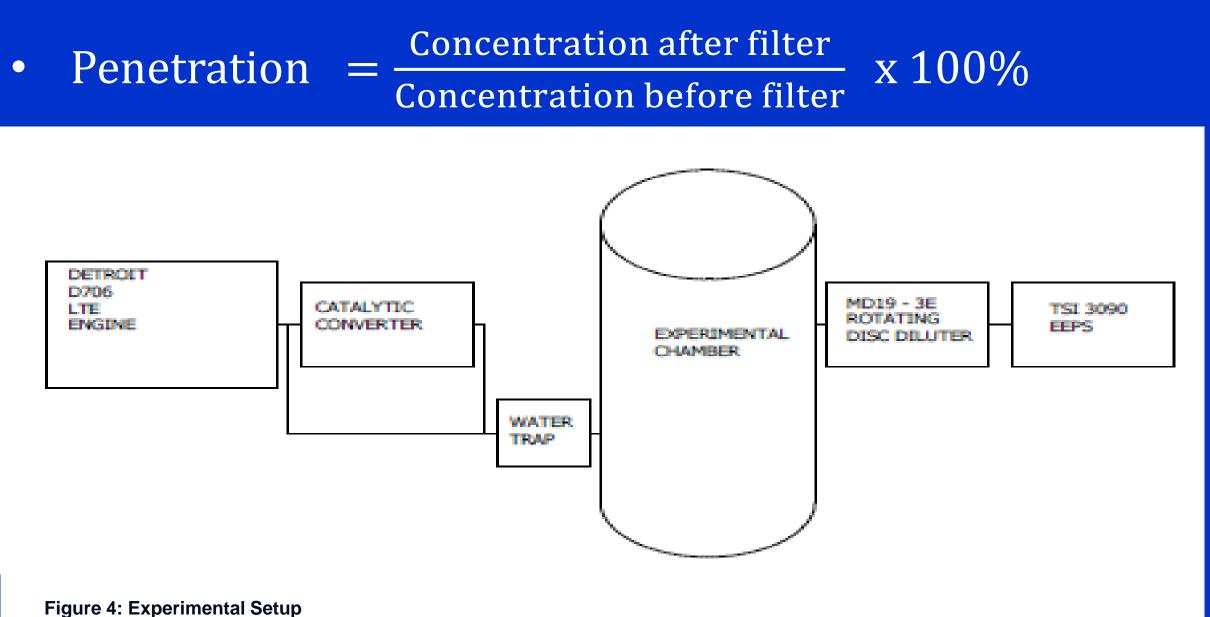



Figure 5: Percentage Penetration by particle count and Elemental Carbon (Note reference line at 6%) AS/NZS1716 certification requirement)


Penetration by mass of elemental carbon significantly different from penetration by particle number count, using a paired samples t-test (t(4)=19.789, p=<0.001).

### Conclusions

- Mean penetration measured as both elemental carbon and particle number count was below 6% for the example filter.
- These results vary dependent on filter model tested.
- Initial data demonstrates that for some commonly used respirator filters penetration

Figure 2 and 3: Experimental Chamber positioned adjacent to engine, respirator filters mounted inside experimental chambe

- Particle number count was measured using a TSI Engine Exhaust Particle Sizer (EEPS) (5.6 – 560nm).
- Elemental Carbon (EC) was sampled by NIOSH • 5040.



may exceed 6% at selected particle diameters, for some filter models.

- This may lead to inhalation of these particles by exposed workers.
- These small particles may contribute to increased cardiovascular mortality and morbidity associated with diesel engine emissions (Martinelli, Olivieri & Girelli 2013), as well as other adverse health impacts.
  - The absence of an occupational exposure guideline with respect to particle number count requires further investigation to determine whether the study results pose an additional health risk to workers.

### Limitations and Future Work

Further investigation is required to understand the variation in penetration results for • some particle diameters. This may be due to differing sampling conditions for example temperature and humidity levels inside the experimental chamber.

#### Acknowledgements

This research was supported by grants to the University of Wollongong provided by WorkCover and Coal Services Health and Safety Trust. The experimental chamber was constructed by ERP Engineering.

**Contact Details** Kerrie Burton, PhD Candidate kab843@uow.edu.au

#### Selected References

Burton, KA, Whitelaw, JL, Jones, AL & Davies, B 2016, 'Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources', The Annals of Occupational Hygiene, vol.60, no.6, pp. 771-779. Eninger, RM, Honda, T, Reponen, T, McKay, R & Grinshpun, SA 2008, 'What does respirator certification tell us about filtration of ultrafine particles?', Journal of Occupational and Environmental Hygiene, vol. 5, no. 5, pp. 286-95. Martinelli, N, Olivieri, O & Girelli, D 2013, 'Air particulate matter and cardiovascular disease: A narrative review', European Journal of Internal Medicine vol. 24, no. 4, p. 295. Standards Australia International Ltd & Standards New Zealand 2012, Respiratory protective devices, AS/NZS 1716:2012, SAI Global Limited / Standards New Zealand, Sydney / Wellington. World Health Organisation 2012, IARC Diesel Exhaust Carcinogenic Press Release #213, International Agency for Research on Cancer.