

Berne University of Applied Sciences Biel-Bienne | Switzerland AFHB | IC-Engines and Exhaust Gas Control

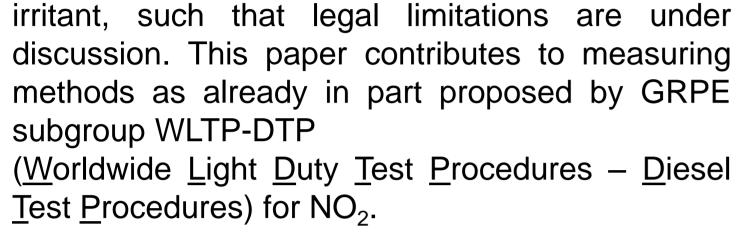
J. Czerwinski, P. Comte AFHB, University of Applied Sciences, Biel-Bienne, CH

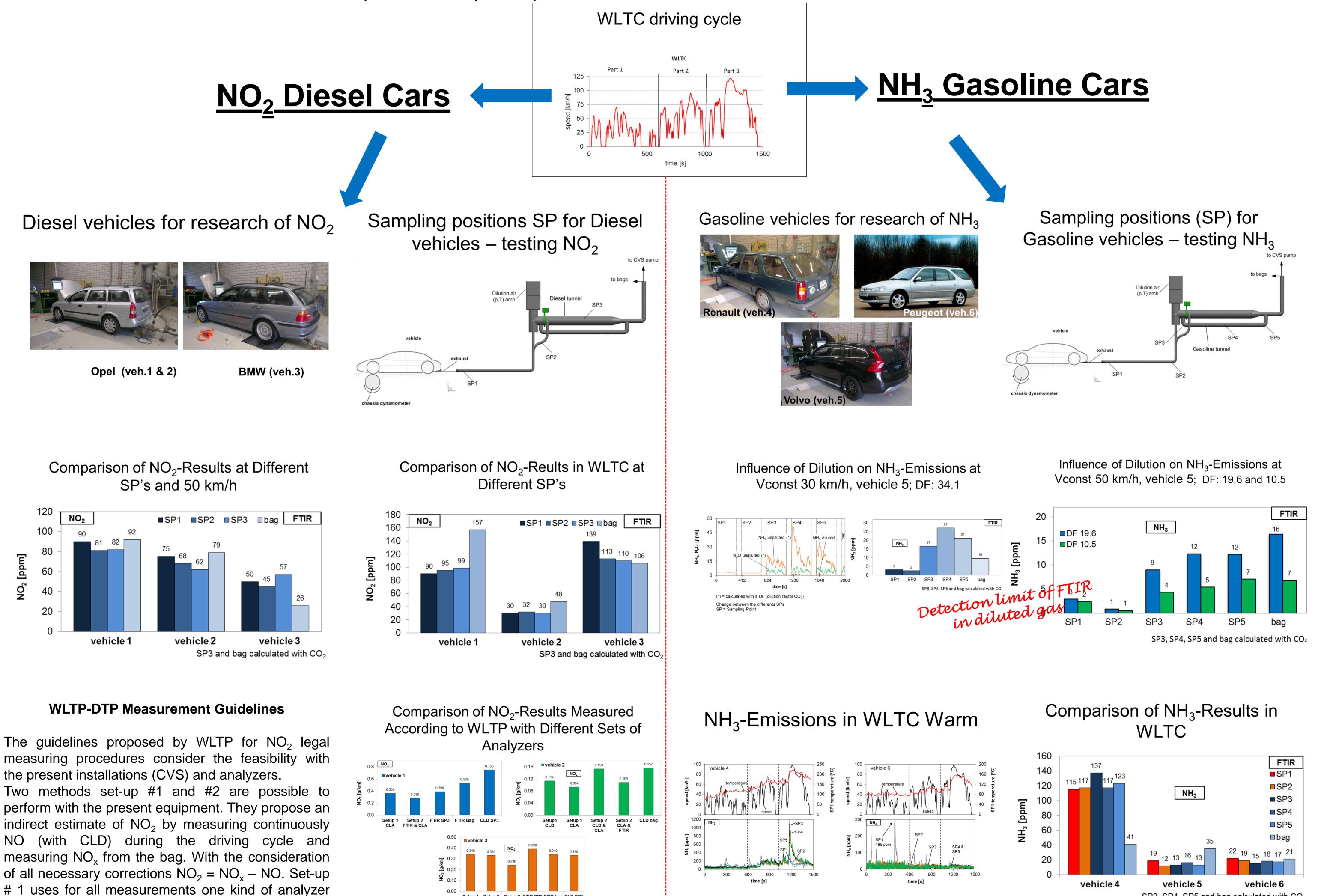
A. Mayer, TTM

N. Heeb, EMPA

J. Lemaire, AEEDA

Abstract


Public concern and complaints regarding ambient air in zones of dense traffic pertains to two compounds of nitrogen, nitrogen dioxide (NO_2) and ammonia (NH_3) ; both are toxic and strongly


Despite legally lowered NO_x emission levels, lumping both, NO_2 and NO, levels of NO_2 have risen in cities and agglomerations as a result of devices and low sulphur Diesel fuels. In present tests two different combinations of NO₂ measuring methods as proposed by WLTP were checked on Diesel cars for practicability in handling and accuracy. These integral, indirect methods ($NO_2 =$ $NO_x - NO$) have been found as useful tools for estimate of NO_2 and with use of appropriate analyzers a satisfactory accuracy was attained.

Furthermore, attention was brought to ammonia (NH₃) emitted by gasoline engines with three way catalysts (TWC) which ought not to be ignored both, deployed catalytic exhaust after-treatment while on the other hand SCR systems for Diesel engines are strictly regulated. Emission levels of more recent TWC turned out to be mostly below 20 ppm NH₃. Vehicle of older technology exhibited significantly higher levels, about 10 times more.

As chemical reactions depend on pressure and temperature (= i.e. flow condition in CVS-tunnel) as well as concentrations, doubts need to be considered on accuracy of results based on chemical reactive substances. Nevertheless, clear tendencies regarding changes of concentrations of NO_2 and NH_3 along the path-way could not be observed.

C 3

SP3, SP4, SP5 and bag calculated with CO2

whereas set-up #2 uses two analyzers.

CLA CLD & FTIR & CLA CLA

Conclusions

NO₂ from Diesel cars with oxidation catalyst

- At steady state operation, the NO₂-concentrations in bags are generally higher for vehicle 1 and 2 and generally lower for vehicle 3, than the tailpipe values (SP1).
- The present NO₂-results at constant speed operation do not indicate any regular, systematic changes of concentrations from SP to SP, which would indicate a chemical reactivity. Further research in this respect is recommended.
- The investigated indirect, integral WLTP NO₂-measuring methods have been found as useful tools to estimate the NO₂-levels.
- Comparisons of NO₂-levels with other vehicles are not recommendable, since the present research was focused on the testing procedures and the NO₂-emissions of vehicles were increased by increasing the driving resistances of chassis dynamometer.

Conclusions

<u>NH₃ from gasoline cars with TWC</u>

- The vehicle with older technology had an approximately 10x higher NH_3 -emission level, than the newer vehicles.
- In single phases of the WLTC the relationships of bag-values and the average SP-values are varying: there is a tendency of lower NH_3 in the bag for high emitting case and a tendency of slight increasing NH₃ in the bag for the low emitting cases.
- In certain acceleration events of WLTC high peaks of NH₃ emissions are observed; some of these peaks are repetitive (originating from rich Lambda-excursions) and some of them are stochastic (originating from store-release effects of NH_3).
- Emission level of newer vehicles, regarded as average of all SP's, is mostly below 20 ppm NH₃.
- The direct, undiluted measurement of NH₃ at tailpipe (SP1) can be recommended as the best variant. This direct measurement avoids the possible problems of: detection limit, contamination from dilution air, adsorption/desorption in CVS-tunnel and artefacts in the bag.