

Center of Excellence for Aerospace Particulate Emissions Reduction Research

Sample Size Distributions

 $M = (\pi \rho/6) \sum Dp_i^3 \Delta_i (dN/dlogDp)$

Sample train cuts out Dp < 10nm

Line Loss Correction

- Measurement data: {M_d, N_d, pen1, pen2, pen4}
- $N_u = facN(M_d, N_d, pen)^*N_d$
- $M_{II} = facM(M_d, N_d, pen)^*M_d$

	FacN_dms			FacM_dms	
	Apride2	Apride5		Apride2	Apride5
	Dec 2011	Aug 2013		Dec 2011	Aug 2013
Min	1.39	2.31		1.18	1.06
Max	2.25	6.01		1.35	1.19
Avg	1.70	4.15		1.26	1.12
σ	0.26	1.44		0.04	0.04
No CS With CS					

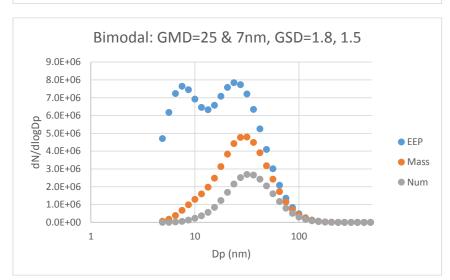
With downstream size distributions, correction factors can be generated:

- Know downstream (dN/dlogDp),
- $N_{ds} = \sum \Delta_i (dN/dlogDp)_i$

Updates to System Loss Correction Model for Jet Engine Exhaust Measurement

D.E. Hagen, P.D. Whitefield, and P. Lobo

Center of Excellence for Aerospace Particulate Emissions Reduction Research, Schrenk Hall, Missouri University of Science & Technology, Rolla, MO 65409 USA


Engine Test Campaigns

- APRIDE 2
 - SR Technics, Zurich CH, Dec 2011
- 3 engine types
- Wide range of engine conditions
- 56 test points
- APRIDE 5
 - SR Technics, Zurich CH, Aug 2013
 - 2 engine types
 - Wide range of engine conditions
 - 39 test points
 - Catalytic stripper

Don't have measured size information

LLC model

- Construct an upstream lognormal size distr that has the same losses as the real one, and calc line loss correction factors for it.
- Engine exhaust aerosols are generally lognormal in shape.

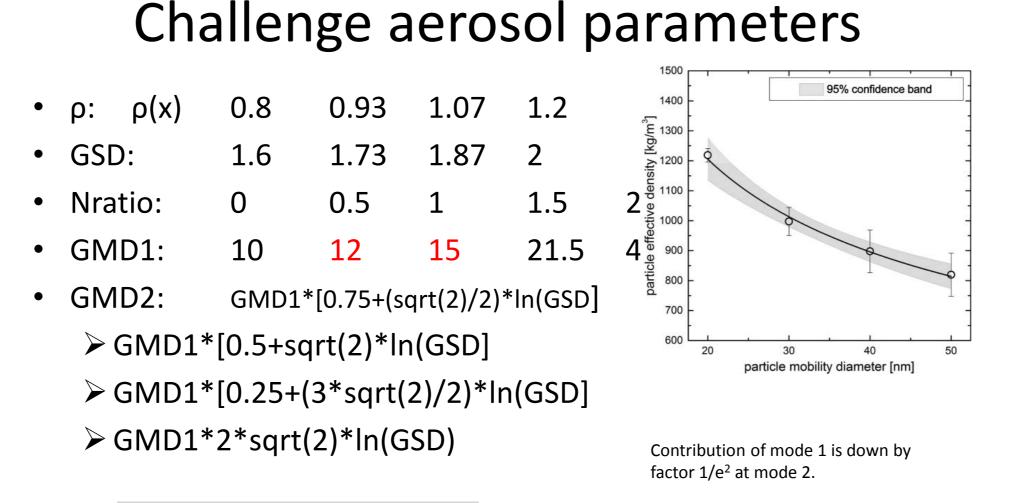
- $N_{us} = \sum \Delta_i (dN/dlogDp)_i/penN_i$
- facN = $N_{\mu s} / N_{ds}$
- $M_{ds} = (\pi \rho/6) \sum Dp_i^3 \Delta_i (dN/dlogDp)_i$
- $M_{iis} = (\pi \rho/6) \sum Dp_i^3 \Delta_i (dN/dlogDp)_i / penM_i$
- facM = M_{us}/M_{ds}

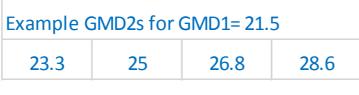
- Lognormal parameters: N, GMD, GSD
- $dN/dlogDp = \frac{2.30N}{\sqrt{2\pi}s}e^{-(lnDp-lnGMD)^2/(2lnGSD^2)}$
 - Know GSD ~ 1.8 from many engine test campaigns
 - Need GMD, GSD

2 Parameter Method

- N, GMD, GSD \rightarrow (dN/dlogDp)_m
- $N_{dm} = \sum \Delta_i (dN/dlogDp)_{mi} * penN_i$
- $M_{dm} = (\pi \rho/6) \sum Dp_i^3 \Delta_i (dN/dlogDp)_{mi} * penM_i$
- $N_{dm} = N_d$
- $M_{dm} = M_d$
- 2 Eqs & 2 Unknowns: N, GMD
- $N_{um} = \sum \Delta_i (dN/dlogDp)_{mi}$
- $M_{um} = (\pi \rho/6) \sum Dp_i^3 \Delta_i (dN/dlogDp)_{mi}$
- facN = N_{um} / N_{dm}
- facM = M_{um} / M_{dm}
- N cancels out in correction factor calculation.

1 Parameter Method


- N=1, GMD, GSD \rightarrow (dN/dlogDp)_m
- $N_{dm} = \sum \Delta_i (dN/dlogDp)_{mi} * penN_i$
- $M_{dm} = (\pi \rho/6) \sum Dp_i^3 \Delta_i (dN/dlogDp)_{mi} * penM_i$
- $N_{dm} = N_d$
- $M_{dm}/N_{dm} = M_d/N_d$
- 1 Eq & 1 Unknowns: GMD
- $N_{um} = \sum \Delta_i (dN/dlogDp)_{mi}$
- $M_{\mu m} = (\pi \rho/6) \sum Dp_i^3 \Delta_i (dN/dlogDp)_{mi}$
- facN = N_{um} / N_{dm}
- facM = M_{um} / M_{dm}


LLC Model Performance

- Challenge model with reasonable but hypothetical EEP aerosols
 - Know upstream dN/dlogDp, N_u, M_u.
 - Calc downstream N_d, M_d.
 - Calc true correction factors
 - facN_{tru} = N_u/N_d
 - fac $M_{tru} = M_u/M_d$
 - Run LLC model
 - Input: N_d , $M_d \rightarrow Output fac N_m$, fac M_m
 - Compute model errors
 - $\delta facN_m = facN_m facN_{tru}$
 - $\delta facM_m = facM_m facM_{tru}$
 - Error contributions from N_d , M_d measurement not included.

LLC Model Performance cont'd

- Challenge model with real engine test data
 - Must have size measurement data
 - Calc correction factors with the size data.
 - Calc correction factors with the LLC model.
 - Compare correction factors
- Error contributions from the model and from measurement uncertainties (e.g. N_d and M_d) are mixed together.

Yields ~ 2100 test cases

Uncertainty assumptions

- $\delta N_{meas,ran} = 2\%$
- $\delta N_{meas,sys} = 10\%$
- $\delta M_{meas,ran} = 7\%$
- $\delta M_{meas,sys} = 15\%$
- $\delta pen_{ran} = 18.57/exp(0.445*x_{nm})$
- $\delta pen_{svs} = 1.6703*ln(x_{nm})-8.5177$

Global uncertainty weighted average errors:

• < $|\epsilon facN\%|$ > = 6.7 ± 0.1

Conclusion

- facN and facM corrections are important.
- Line Loss Correction model works well in generating number and mass correction factors to be used in estimating upstream number and mass concentrations.

• < $|\epsilon fac M\%| > = 0.8 \pm 0.1$

(No contribution from N and M measurement uncertainties)

Experimental Test LLC model vs Size-based corrections

- 16 Data Sets
- 1386 Test points
- <εfacN%> < 20
- <εfacM%> < 4

- One parameter solution is more stable than the two parameter solution.
- Average correction factor error for number is <20%, for mass is <4%.

Acknowledgements

- This work was separately funded by the US Federal Aviation Administration (FAA) and Environmental Protection Agency (EPA), the Swiss Federal Office of Civil Aviation (FOCA), and Transport Canada (TC).
- In-kind cost contribution for this project was provided by the European Aviation Safety Agency.
- The authors would like to thank the companies and agencies that provided the test opportunities and permission to use the emission data to establish these challenge parameter ranges.
- Any opinions, findings, and conclusions expressed in this paper are those of the authors and do not necessarily reflect the views of the sponsoring organizations.