Time-resolved characterization of secondary particle formation from a gasoline passenger car

P. Karjalainen¹, H. Timonen², E. Saukko¹, H. Kuuluvainen¹, S. Saarikoski², P. Aakko-Saksa³, T. Murtonen³, M. Bloss², M. Dal Maso¹, P. Simonen¹, E. Ahlberg⁴, B. Svenningsson⁴, W.H. Brune⁵, R. Hillamo², J. Keskinen¹ and T. Rönkkö¹

> ¹Tampere University of Technology ²Finnish Meteorological Institute ³VTT Technical Research Centre of Finland Ltd. ⁴Lund University ⁵Pennsylvania State University

Contents

- Types of exhaust-related particles
- PAM chamber
- Experimental
- Results
 - Size distributions
 - Chemical composition
 - Effect of ethanol content
- Summary

Types of exhaust related particles

Potential aerosol mass (PAM) chamber

- Flow through chamber (Kang et al. 2007, Kang et al. 2011)
- High oxidant concentrations of O₃, OH, HO₂ and UV lights used in chamber are shown to simulate SOA formation in the atmosphere
- Flow 4-10 l/min
- Represents 2–20 days of atmospheric oxidation
- Not laminar, continuously mixed flow

Experimental

- Gasoline passenger car, model year 2011
- Odometer reading 48 700 km
- 1.4 I turbo-charged flex-fuel GDI engine
- 7 gear dual clutch automatic transmission
- Emission level Euro 5 with a three-way catalytic converter
- Test fuels comprised of
 - Regular commercial E10 fuel (max 10% ethanol)
 - Commercial E85 fuel (85% ethanol)
- The driving cycle used in the study was New European Driving Cycle (NEDC) on a chassis dynamometer in a climatic test cell at +23 °C.

CSUDC = cold start urban driving cycle HUDC = hot urban driving cycle EUDC = extra-urban driving cycle

Sampling setup

Dilutions with pure N_2 and O_2 to minimize "background PM"

Emission profile, "delayed primary" particles over the NEDC

⁽Karjalainen et al. 2015)

Chemical composition, "delayed primary" particles over the NEDC

(Karjalainen et al. 2015)

Emission profile, "secondary" particles formed over the NEDC

(Karjalainen et al. 2015)

30.6.2016

Chemical composition, "secondary" particles over the NEDC

Chemical composition of particles during sub-cycles of **NEDC**

Secondary PM

Delayed primary PM

Secondary PM overall 13 times higher than delayed primary PM for the NEDC

(Karjalainen et al. 2015)

30.6.2016

Size distributions with different ethanol contents

Less soot mode particles for E85

Mean particle size overall smaller for E85

30.6.2016 12 (Timonen et al. 2016)

Chemical composition, effects of ethanol on secondary PM

Large reduction in organics when increasing the ethanol content

E.g. peak in organics 26 µg/m³ vs. 1.6 µg/m³

Summary

- In mass terms, the amount of secondary particles was 13 times higher than the amount of delayed primary particles for E10
- The formation, composition, number, and mass of secondary particles was significantly affected by driving patterns and engine conditions
- The highest gaseous and particulate emissions were observed at the beginning of the test cycle when the performance of the engine and catalyst were below optimal
- The key parameter for secondary particle formation was the amount of gaseous hydrocarbons in primary emissions; however, also the primary particle population had an influence
- Increase in ethanol content reduced the secondary aerosol formation potential

Acknowledgements

We acknowledge support by Tekes (the Finnish Funding Agency for Technology and Innovation), Cleen Ltd (MMEA project), the Academy of Finland (Grant no. 259016), IEA-AMF Annex 44 and the Swedish Research Councils VR and Formas.

References

- Kang, E., Root, M. J., Toohey, D. W. and Brune, W. H.: Introducing the concept of Potential Aerosol Mass (PAM), Atmos. Chem. Phys., 7(22), 5727–5744, doi:10.5194/acp-7-5727-2007, 2007.
- Kang, E., Toohey, D. W. and Brune, W. H.: Dependence of SOA oxidation on organic aerosol mass concentration and OH exposure: Experimental PAM chamber studies, Atmos. Chem. Phys., 11(4), 1837– 1852, doi:10.5194/acp-11-1837-2011, 2011.
- Karjalainen, P., Timonen, H., Saukko, E., Kuuluvainen, H., Saarikoski, S., Aakko-Saksa, P., Murtonen, T., Dal Maso, M., Ahlberg, E., Svenningsson, B., Brune, W. H., Hillamo, R., Keskinen, J., and Rönkkö, T.: Time-resolved characterization of primary and secondary particle emissions of a modern gasoline passenger car, Atmos. Chem. Phys. Discuss., 15, 33253-33282, 2015.
- Timonen et al., Influence of fuel ethanol content on primary emissions and simulated secondary aerosol formation for a modern flexfuel DISI vehicle, manuscript under preparation, 2016.

