

Effect of Jet Fuel Properties on **Solid Particle Number and Mass Emission from Aircraft Gas Turbine Engine: Development of a Jet Fuel Particle Index** SOUTHWEST RESEARCH INSTITUTE®

> Imad A. Khalek, Ph.D., Sr. Program Manager <u>Ikhalek@swri.org</u>, San Antonio, Texas, USA

20th ETH Conference on Combustion Generated Particles, Zurich, Switzerland, June 14-16, 2016

OFFICE OF AUTOMOTIVE ENGINEERING

Project Team

- This research was funded by SwRI Internal Research & Development Program:
- Principal Investigator:
- Co-Investigator:
- Experimental Efforts:

Imad Khalek, Ph.D. Nigil Jeyashekar, Ph.D. Vinay Premnath, Daniel Preece & Richard Mechler, and Michael Gass George Wilson

Fuel Technical Advisor:

OFFICE OF AUTOMOTIVE ENGINEERING

Our Work

- SwRI has done some very recent experimental work on the effects of fuel properties on particle emissions from a gas turbine combustor:
 - We also developed a Jet Fuel Particle Index (JFPI) for the five fuels tested in the program:
 - The JFPI is a single parameter that combines the chemistry and physics of fuel properties to rank fuels in terms of their soot forming tendency leading to particle emissions
 - Over 800 fuel properties are used to calculate the JFPI
 - The JFPI is an extension of the Gasoline Fuel Particle Index (GFPI) that has gained a lot of momentum in the area of gasoline fuels

T700 Combustor Liner

AH-64 Apache

UH-60 Black Hawk

Figure 1 is a complete T700 combustor liner manufactured by GE

- Figure 2 is a 3 sector cup
 - Three fuel nozzles
 - Emissions measured at the center cup

A scaled down version of other combustor designs can be added

OFFICE OF AUTOMOTIVE ENGINEERING

Jet Fuel Properties Tested (5 Fuels)

ASTM Fuel Property	Jet A	JP-8	Jet A/ FT-SPK	JP-8/ FT-SPK	FT- SPK							
			Blend	Blend								
Density – D4052 (kg/m ³) at 20°C	799.2	772.	764.0	770.4	739.2							
		3				310						
Smoke Point (D1322) (mm)	23.5	32.2	38.5	32.3	54.4				_	Jet A		
Chemical Composition (D1319)						290			-	JP-8		
Aromatics (vol. %)	18.4	11.4	6.7	9.9	1.3				-	Jet A/FT-SF		
Olefins (vol. %)	1.8	0.8	0.7	1.5	1.1	270			-	JP-8/FT-SP	YK Blend	
Saturates (vol. %)	79.8	87.8	92.6	88.6	97.6	្រ				FT-SPK		
Napthalene Content (D1840) (vol. %)	1.26	0.46	0.30	0.33	0.06	() 250 230 230 230 210						
Carbon/Hydrogen (D5291) CH												
Carbon (mass %)	86.13	85.3	85.18	85.09	84.63	ਸ਼ਿ 230 ਯੂ						
		2				u du 210						
Hydrogen (mass %)	14.02	14.5	14.85	14.57	15.46	⊢						
		1				190						
D5453 (ppm)	1006.5	51.2	72	5.7	1.8							
Vapor Pressure (D6378)						170 -						
$T=0^{\circ}C(P_{abs})$	0.03	0.02	0.03	0.04	0.00							
$T=20^{\circ}C(P_{abs})$	0.06	0.07	0.09	0.14	0.08	150	ļ		40			
$T=40^{\circ}C(P_{abs})$	0.11	0.14	0.18	0.18	0.21)	20	40	60	80	1
$T=60^{\circ}C(P_{abs})$	0.21	0.34	0.34	0.41	0.47			Perce	entage Volu	ıme Evaporat	ed	
$T=80^{\circ}C(P_{abs})$	0.52	0.78	0.77	0.87	1.01							
T=100°C (<i>Pabs</i>)	1.08	1.61	1.63	1.78	2.11							
$T=120^{\circ}C(P_{abs})$	2.06	3.06	3.20	3.46	3.95							

Jet A: Commercial Jet Fuel JP-8: US Air Force Jet Fuel

OFFICE OF AUTOMOTIVE ENGINEERING

5

100

PARTICLE INDEX

Particle Measurement (Soot Mass, Solid & Total Particle Number)

1.00 C 4.00 C 7.00 C 1.0000.000.0000.00000000 Combustion Diluted Sample Sample Coolant/Dilution Mikrophone Detector MBUSTION M168 BC particle CAMBUSTION DMS 500 MKII ast Particulate Spectromete Modulated laser beam Soot Mass Measured by AVL **Micro-Soot Sensor**

Particle Size and Number using Cambustion DMS500 with and without SwRI Catalytic Stripper

OFFICE OF AUTOMOTIVE ENGINEERING

000

Modulated

heating

Sound wave

Modulated

Expansion

Fuel Particle Index (DBE,VP,Wt)

- Why are the DBE and vapor pressure important factors in the PM Index equation?
 - Fuel components of low vapor pressure evaporate slowly, and promotes local rich burning regions (This could be important at idle, very low temperature)
 - DBE (Double Bond Equivalent) is essentially an indication of the degree of unsaturation of a molecule. Fuel components with high DBE values are typically polyaromatic hydrocarbons (PAHs). PAHs in the fuel are known to be precursors for exhaust particulates.
- Note that PAHs have high DBE values <u>and</u> very low vapor pressures. Even a small amount of PAHs in the fuel will cause it to have a high PM Index.

Gasoline & Jet Fuel Particle Index (GFPI & JFPI)

Gasoline Fuel: GFPI Distribution in the USA

Jet Fuel: JFPI for Five Different Fuels, we recently tested

Khalek & Jetter, 2012 CRC Workshop. Work Funded by Honda R&D America

Khalek & Jeyashekar, *October 2015, Funded by SwRI Internal Research & Development*

OFFICE OF AUTOMOTIVE ENGINEERING

Experimental Results

A Consortium of

OFFICE OF AUTOMOTIVE ENGINEERING

Particle Emissions at Idle, Take-Off &

Cruise Solid + Volation

 Solid + Volatile Particle Emissions Solid Particle Emissions

Part of the Regulation

Not Part of the Regulation

OFFICE OF AUTOMOTIVE ENGINEERING

swri.org

Measured Size Distribution (Jet A)

GNMD is 10 to 40 nm smaller than those typically observed in Gasoline and Diesel Engine Exhaust

OFFICE OF AUTOMOTIVE ENGINEERING

Relationship Between Solid Particle Number and Soot Mass

Slope is <u>one order of magnitude higher</u> than Gasoline Direct Injection (GDI) Engines

OFFICE OF AUTOMOTIVE ENGINEERING

Relationship Between Select Fuel Properties and the JFPI

OFFICE OF AUTOMOTIVE ENGINEERING

Example of Major Fuel Components Contributor to the JFPI

OFFICE OF AUTOMOTIVE ENGINEERING

Correlation between Jet Fuel Particle Index (JFPI) and Particle Emissions

Summary

- Based on this limited work, we have identified a:
 - Jet Fuel Particle Index (JFPI) that is a continuation of the Gasoline Fuel Particle Index (GFPI)
 - Similar to the GFPI, the JFPI can be used as a predictor of soot forming tendency of Jet fuel in combustion worldwide
 - The JFPI can be used as a singular parameter to represent the sooting tendency of jet fuels worldwide
 - This can be very valuable prior to the upcoming regulations on particle emissions from jet engines
 - This can be also used for fine tuning fuel properties for particle emissions reduction
- SwRI plans to continue this development in collaboration of industry/government
 - This can provide valuable information to engine developers and fuel developers, including alternative fuels

