EFFECT OF DIMETHYL ETHER MIXING ON SOOT SIZE DISTRIBUTION IN PREMIXED ETHYLENE FLAME

Zepeng Li, Suk Ho Chung, William L. Roberts

Clean Combustion Research Center, King Abdullah University of Science and Technology, KSA

Background

□ **Soot**: carbonaceous particles resulting from incomplete combustion of hydrocarbon fuels

- Incomplete Combustion: Efficiency
- Deposition : Burner Lifetime / Performance
- > Health: Carcinogenic and Mutagenic
- Climate: Global Warming & Regional precipitation
- ➢ Visibility: Haze

Dimethyl Ether (DME)

→ High oxygen content & absence of C–C bonds: smokeless combustion, low formation and high oxidation rates of particulates.

→ High cetane number:

low auto-ignition temperature, almost instantaneous vaporization.

Results: Soot Size Distribution

- ► Low boiling point: quick evaporation
- ► Low energy density
- > High requirements on sealing materials

=

Methodology

Experimental techniques

- ✤ Flame configuration:
 - Burner-stabilized stagnation flame with the equivalence ratio (\emptyset) of 2.0
- Temperature measurement: <u>Rapid insertion technique</u> with a type-R thermocouple
- Soot size distribution measurement:
 - Probe sampling and Scanning Mobility Particle Sizer (SMPS)

ethylene/DME flames at $\emptyset = 2.0$

Results: Soot Oxidation Behavior

- **Thermo-gravimetric analysis** of soot samples at incremental DME mixing ratios. Temperatures corresponding to 5% (a), 95% (b) conversion ratios, respectively. Lower temperature represents better oxidizability.
 - Elemental analysis of soot samples at incremental DME mixing ratios. **Higher O/C and H/C mass ratios** represent better oxidizability.

Results: Flame Temperature Profile

Comparison of experimental (radiation corrected, point) and simulated (dash line) flame temperatures at elevated separation distances

Comparison of experimental (radiation corrected, point) and simulated (dash line) temperature profiles at $H_p = 1.2$ cm

Hollow point: Cold gas velocity = 8cm/s id point: Cold gas velocity = 6cm/s DME mixing ratio (%)

The addition of DME facilitates soot oxidation.

Results: Mole fractions of Major Species

Calculated mole fractions of several crucial species in soot formation and oxidation

- Good agreement between experiment and model prediction.
- □ Maximum flame temperatures increase as separation distances increase.

DME mixing ratio (%)

10

20

30

Peak flame temperatures are lifted as a consequence of DME addition.

1760

CLEAN COMBUSTION RESEARCH CENTER