INFRASTHINKINGFORTOMORROW

Benedikt Notter, Philipp Wüthrich, Jürg Heldstab

NRMM as a PM source in Switzerland: Results from the Swiss non-road inventory

20th ETH Conference on Combustion Generated Nanoparticles, Zurich, June 13-16, 2016

Introduction: The Swiss non-road emissions inventory

- Construction machinery: e.g. excavators, load and dump trucks, rollers, generators, ...
- Industrial machinery: e.g. forklifts, snow groomers, public works machinery, generators in commerce, airport airside vehicles/machinery
- Agricultural and silvicultural machinery: tractors, transporters, chainsaws etc.
- Garden-care/hobby appliances: chainsaws, lawn-mowers, blowers, ...
- Ships and boats: motor boats, passenger ships, barges, ...
- Rail: diesel locomotives
- Military: tanks, construction machinery, ...

Publications

- First Swiss NRMM emissions inventory in 1996
- Updates:
 - **2008**
 - 2015

(<u>http://www.bafu.admin.ch/publikationen</u> /publikation/01828/index.html?lang=en)

→ Time-series 1980-2050

→ Evaluation of impact of Swiss legislation, and aftertreatment strategies of manufacturers, on PM emissions

Online database

<u>http://www.bafu.admin.ch/luft/00596/06906/offroad-daten/index.html?lang=en</u>

Air	Homepage > Air > Data, indicato	ors an > Nonroad databa	se									
				Print this	page	×		f	y	G•	in	×
In brief	New July 1											
Information for specialists	Nonroad database											
Data, indicators and maps	Instructions for the use of the non-	-road emissions databas	e									
Air pollution	Result type:	Result type:										
Nonroad database	C 1) Emission factors, operating hours per machine (independent of number of machines)											
Nonroad database:		ind childsions according to a	10 5 10 13 101-10		, y							
introduction and instructions for use	Machine family:	Pollutant/consumption:	Year:	Level of differen	tiatio	n:						
Indicators	Select all Construction machinery	Select all HC	Select all	Category:	⊙ µ О [Aggre Differe	gate entiate					
Pollutants	Industrial machinery		1985		•							
Legislation	Agricultural machinery Forestry machinery	L NOx Fuel cons.	1990 1995	Engine type:	οí	liffere	gate entiate					
Enforcement aids	Garden-care/hobby appliances	PM	2000	Power class:	• ,	Aggregate Differentiate						
Publications and studies	Railway machinery Marine machinery	CO2	2005	Fower class.	0 [
Specialised services	Military machinery	П минс	2015	Emission levels:	\odot	Aggre	gate					
Contact		L N2O Benzene	 2020 2025 2030 2035 2040 2045 2050 			JITTERE	ntiate					

Abbreviations: EF: Emission factors, PF: particle filter

If more than 1000 lines of results are queried, only the download link for the CSV table is displayed!

Start query Delete

Limitations of the inventory regarding particulate emissions

- Only combustion as a PM source is considered; Non-exhaust sources are not (yet) included
- No differentiation of PM size classes or material only total PM10, which is considered equal to PM2.5 (for exhaust PM)
- PM emissions are only modelled for diesel combustion.
 PM from petrol engines is not included (there are no legal PM limit values for non-road petrol engines)
- PN is also modelled, but results are not published due to low reliability (low availability of measurements for all EU stages)

Methods: NRMM emissions calculation formula

→ Calculation by «subsegment», i.e. machine type, technology/aftertreatment, size class, emission standard

Methods: Base emission factor data sources

Engine power class	Pre-EU A	Pre-EU B	EU I	EU II	EU IIIA	EU IIIB	EU IV	EU				
Particulate matter (PM)												
<18 kW	1.51	1.18	1.00	0.80	0.70	0.60	0.60	0.4				
18–37 kW	1.20	0.94	0.7422	0.60	0.54	→ 0.54	→ 0.54	0.0				
37–56 kW	1.09	0.85	0.47	0.32	→ 0.32	0.03	0.03	0.0				
56–75 kW	1.09	0.85	0.47	0.32	→ 0.32	0.03	0.03	0.0				
75–130 kW	0.61	0.47	0.35	0.24	→ 0.24	0.03	0.03	0.0				
130–560 kW	0.61	0.47	0.22	0.16	→ 0.16	0.03	0.03	0.0				
>560 kW	0.61	0.47	0.22	0.16	→ 0.16	→ 0.16	→ 0.16	0.0				

 Pre-Euro: US EPA data with reduction rates based on EMPA/Agroscope/IVECO PM measurements

- EU-I, -II, -IIIA: Type approval values plus (or minus) tolerance, or average of TA and limit
- EU-IIIB EU-IV: Limit values
- EU-V: Limit values, type approval values of existing machinery with DPF for 18-560 kW

Sources of emission and consumption factors:

EPA data,

EPA data with reduction rate equivalent to that for black exhaust measurement data,

Homologation level plus manufacturing

tolerance,

Average of homologation and limit value,

Division of limit value for total of HC +

NO_X, less 10 %,

Maximum level less 30 %,

Maximum level less 10 %,

Emission limit value

Assumption or adoption of figure from

another emission stage (arrow).

Methods: Correction factors for DPF use

Uncorrected and corrected EF, construction machinery

	SizeClass	PreEUA	PreEUB	EU1	EU2	EU3A	EU3B	EU4	EU5
Base EF	<18 kW	1.505	1.175	1.000	0.800	0.700	0.600	0.600	0.400
/-EE accuming	18–37 kW	1.200	0.941	0.738	0.596	0.540	0.540	0.540	0.400
(=EF assuming	37–56 kW	1.090	0.849	0.475	0.318	0.318	0.025	0.025	0.015
minimal FLI	56–75 kW	1.090	0.849	0.475	0.318	0.318	0.025	0.025	0.015
	75–130 kW	0.606	0.473	0.355	0.238	0.238	0.025	0.025	0.015
compliance)	130–300 kW	0.606	0.473	0.224	0.165	0.165	0.025	0.025	0.015
	300–560 kW	0.606	0.473	0.224	0.165	0.165	0.025	0.025	0.015
	>560 kW	0.606	0.473	0.224	0.165	0.165	0.165	0.165	0.045
DPF correction	SizeClass	PreEUA	PreEUB	EU1	EU2	EU3A	EU3B	EU4	EU5
fastava	<18 kW	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.150
Tactors	18–37 kW	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.135
	37–56 kW	0.100	0.100	0.100	0.100	0.100	0.600	0.600	1.000
	56–75 kW	0.100	0.100	0.100	0.100	0.100	0.600	0.600	1.000
	75–130 kW	0.100	0.100	0.100	0.100	0.100	0.600	0.600	1.000
	130–300 kW	0.100	0.100	0.100	0.100	0.100	0.600	0.600	1.000
	300–560 kW	0.100	0.100	0.100	0.100	0.100	0.600	0.600	1.000
	>560 kW	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.366
Resulting EF	SizeClass	PreEUA	PreEUB	EU1	EU2	EU3A	EU3B	EU4	EU5
(with DDE)	<18 kW	0.151	0.118	0.100	0.080	0.070	0.060	0.060	0.060
	18–37 kW	0.120	0.094	0.074	0.060	0.054	0.054	0.054	0.054
	37–56 kW	0.109	0.085	0.047	0.032	0.032	0.015	0.015	0.015
	56–75 kW	0.109	0.085	0.047	0.032	0.032	0.015	0.015	0.015
	75–130 kW	0.061	0.047	0.035	0.024	0.024	0.015	0.015	0.015
	130–300 kW	0.061	0.047	0.022	0.016	0.016	0.015	0.015	0.015
	300–560 kW	0.061	0.047	0.022	0.016	0.016	0.015	0.015	0.015
	>560 kW	0.061	0.047	0.022	0.016	0.016	0.016	0.016	0.016

Methods: Diesel particle filter (DPF) use

- Machinery > 18 kW on construction sites: DPF requirement by law (Swiss ordinance on Air Pollution Control OAPC)
- Other machinery:

INFRAS

- Aftertreatment strategy for EU-IIIb, EU-IV by manufacturer based on Integer (2013)
- Market shares by manufacturer based in Off-Highway Research (2008, 2012)

	Manufacturer	Stage EU-IIIB / US Tier 4 Interim	Stage EU-IV / US Tier 4 Final
	AGCO	No	No
	Caterpillar	Partially	Yes
	CNH	No	No
	Cummins	Partially	Partially
	Deutz	Partially	Yes
	IHI	No	No
	Isuzu	Partially	No
	John Deere	Partially	Yes
	Komatsu	Partially	Partially
	Kubota	Partially	Yes
Swie	Liebherr	Partially	No
20012	Takeuchi	No	No

Results: Development of NRMM activity

Operating hours [million hrs/a]

Results: PM10 emissions

a) Shares in 2015

b) Time series 1980-2050

Results: Road vs. non-road, development

Results: Impact of legislation on DPF use

- Construction machinery: Rapid increase up to >70% in 2000-2010 due to OAPC; stagnation afterwards as no DPF requirement for machines <18 kW
- Agricultural machinery: slow increase due to absence of regulations beyond EU limits and long life cycles

Results: Impact of legislation on PM emissions

Construction machinery Agricultural machinery t∕a t/a 450 450 400 400 350 350 300 300 250 250 200 200 150 150 100 100 50 50 0 0 Zange influenceable by Swiss legislation Actual development

- In 2015, PM emissions from construction machinery are 77% below the level with minimal DPF use based on EU legislation
- PM emissions from agricultural machinery are only 1% below the level with minimal DPF use
- In total, NRMM emissions are 34% below minimal DPF level (also due to voluntary measures e.g. from rail operators)

INFRAS | NRMM as PM source in Switzerland | June 16, 2016 | B. Notter, Ph. Wüthrich, J. Heldstab

Conclusions

- PM10 (exhaust) emissions from NRMM are rapidly decreasing
- This is mainly a result of
 - EU legislation (NRMM directive 97/68/EC and related directives)
 → general decrease
 - Swiss legislation (OAPC, BauRLL) → rapid decrease in construction machinery
- However, large uncertainty to which extent modelled decline of emissions is real
 - \rightarrow more measurements are necessary, especially of newer machines
 - ightarrow real-world machine loads need to be assessed
 - → More international cooperation between emission modellers is needed!

→ Switzerland: DPF use, especially in agriculture, needs to be monitored

infras FC

THINKING FOR TOMORROW

Thank you for your attention!

Dr. B. Notter

Senior project manager

Ph. Wüthrich

Head of transport and environment division

Dr. J. Heldstab

Head of energy and environment division

Objectives of the 2015 update

- Modelling period 1980 2050 (previously up to 2020) → include Euro-V
- Include electric devices that replace NRMM with combustion engines
- Include non-regulated pollutants CH₄, NMHC, benzene, N₂O
- Include some machine types that were previously neglected (generators in industry, commerce and public administration, barges on Rhine river, vehicles and machinery of airside sector of airports)
- Assess diesel particle filter (DPF) use and impacts of Swiss legislation
- Assess impact of delayed implementation of emission standards

Methods: Activity data sources (general)

- Official statistics (e.g. vehicle registration database, agricultural census, import/export statistics, fuel tax refunds)
- Market studies (e.g. Off-Highway Research, Integer Research)
- Questionnaires sent to operators
- Expert workshops
- Previous inventory versions
- Trend scenario up to 2050: sectoral economic forecasts, population forecasts, long-term planning of railway operators and military, forward projection of trends with gradual level-off

Methods: Model adaptions for DPF use

Model published in FOEN (2008):

- DPF correction only for retrofitted machinery.
- Assumption that from EU-IIIB compliance could only be reached with DPF and thus all machinery would be fitted with DPF ex-works.
- Constant correction factor values (PM: EF 90%, FC: CF + 3%)

Adapted model (FOEN 2015):

- Compliance with limit values of EU-IIIB and −IV is also possible without DPF → only partial fitting of DPF by manufacturers
- Therefore, correction factor is applied for all machinery fitted with DPF, but differentiated by machine category, size class and emission standard, so that from EU-IIIB target EF of 0.015 g/kWh results

Methods: Correction factors for DPF use

Uncorrected a	EU-IIIA 1	mavh	Where							
					limit v	value <0	.03,			
	SizeClass	PreEUA	PreEUB	EU1	DPE can	reduce	FFby	EL 4	EU5	
Base EF	<18 kW	1.505	1.175	1.000	0.800	0.700	0.60	.60	U-V-Wh	ere limit
	18–37 kW	1.200	0.941	0.738	additio	nal 40%	only ₅₄ 0	.540	0.400	
(=EF assuming	37–56 kW	1.090	0.849	0.475	0.318	0.318	0.025	0.0 V 3	lue tor ₅ l	PN, DPF is
minimal FU	56–75 kW	1.090	0.849	0.475	0.318	0.318	0.025		ressarv	therefore
	75–130 kW	0.606	0.473	0.355	0.238	0.238	0.025	.025	0.015	
compliance)	130–300 kW	0.606	0.473	0.224	0.165	0.165	0.025	.025	no corr	ection
	300–560 kW	0.606	0 473	0 224	0.165	0.165	0.025	.025	redu	ired
	>560 kW	ປກ	to EU-III	A: 0224	0.165	0.165	0.165	.165	0.045	
			reducti						7 E	1
DPF correction	SizeClass	Pre 90%	reducti		EU2	EU3A	EU3B	EU4	EU5	l
factors	<18 kW	- with	DPF (as	0100	0.100	0.100	0.100	0.100	0.150	ļ
Tactors	18–37 kW	0.100	0.100	0.100	0.100	0.100	.100	0.100	0.185	į
	37–56 kW	0.10	a model	0 100	0.190	0.100	0.600	0.600	1 00	
	56–75 kW	0.100	0.100	0.100	0.100	0.100	0.600	0.600	1.000	
	75–130 kW	0.100	0.100	0.100	0.100	0.100	0.600	0.600	1.000	
	130–300 kW	0.100	0.100	0.100	0.100	0.100	0.600	0.600	1.000	
	300-560 kW	0.100	0.100	0.100	0.100	0.100	0.600	0.600	1.000	
	>560 KW	0.100	0.100	0.100	0.100	0.100	0.100	0.100	.366	i
Resulting EF	SizeClass	PreEUA	PreEUB	U1-11	V. Hana	EUJA	EL BB	EU4	EU5	
() 005)	<18 kW	0.151	0.118	0.100	V: FOF S	ize class	es	.060	0.060	
(with DPF)	18–37 kW	0.120	0.094	wit	hout lim	it value	for 0.054	0.054	0.054	
	37–56 kW	0.109	0.085	0.047	0.032	0.032	0.015	0.015	0.015	
	56–75 kW	0.109	0.085	0.047	, conec		.015	0.015	0.015	
	75–130 kW	0.061	0.047	0.0	ust resul	t in eau	a 0.015	0.015	0.015	
	130–300 kW	0.061	0.047	0.022	0.016	0.016	0.015	0.015	0.015	
	300–560 kW	0.061	0.047	0.022	Inal EF6	is un <u>ge</u> i	0.015	0.015	0.015	
	>560 kW	0.061	0.047	0.02	revious	emissio	0.016	0.016	0.016	
	roo in Cuuitzarlar		2016 0.1		stand	lards				21
INFRAS INRIVIIVI as PIVI SOU	rce in Switzerlar	in Linue TP	, 2016 B. I	NOLLET, FIL	wathiten, J.	TICIUSTUD				21

Methods: Sources of historical DPF use

- Previous NRMM inventory (FOEN 2008):
 - Survey of manufacturers and retrofitters of DPF
 - Study by TTM (2004) on the implementation of the «Baurichtlinie Luft» (Directive on clean air on construction sites)
 - Consultation on the revision of the SAV (ordinance on ship emissions)
 - Information by SBB (Swiss Federal Railways)
- Swiss vehicle registration database (MOFIS)

Methods: DPF use, EU-IIIB + EU-IV

- Machinery > 18 kW on construction sites: DPF requirement by law (Swiss ordinance on Air Pollution Control OAPC)
- Other machinery:
 - Aftertreatment strategy for EU-IIIb, EU-IV by manufacturer based on Integer (2013)
 - Market shares by manufacturer based in Off-Highway Research (2008, 2012)

- Catepillar was originally active in both the on-highway an off-highway sectors – it stopped most of its on-highway business in 2010. It is an important supplier in other diesel engine markets: defence, locomotive, marine and mining. Catepillar operates as an OCM and a tier supplier; manufacturing its own range of off-highway agricultural and construction machinery, as well as supplying Cat- or Perkins- branded engines to its competitors.
- Caterpillar has transferred its experience of emissions reduction in the on-highway sector to its engine design for the off-highway sector, and in doing so has leveraged its ACERT-branded technology.

Emissions control strategy

 Caterpillar's announced Tier 4 (interim and full) strategy is an extension of its 2007 and aborted 2010 on-highway Advanced Combustion Emission Reduction Technology (ACERI) system. This is essentially a package of airmanagement and in-cylinder improvements supporting an EGR system, although the company has sought to avoid using the term EGR in any of its brochures and publicity materials.

- Instead, the system is referred to as the Cat NOx Reduction System in order to avoid the negative connotations implied by the term EGR. The system also includes a number of after-treatment components like a diesel oxidation catalyst (DOC) and a diesel particulate filter (DPF), together with SCR for Tier 4 Final.
- The company used ACERT in off-highway applications for Tier 3, though the technology package was much simpler.
 For Tier 4 interim Cat is using a low pressure EGR loop in tandem with common rail high pressure fuel injection, series turbochargers, multi-shot injection and an improved engine control unit.
- In March 2011 the company officially announced that it shall be using SCR in tandem with its existing ACERT technology in order to meet Tier 4 Final standards for off-highway engines.
- Internat 2012 (April) saw the Tier 4 Final, C13 ACERT and C7.1 ACERT engines unveiled, featuring SCR technology followed by the C9.3 ACERT Tier 4 Final in October 2012. By Bauma 2013 the entire engine range had been updated at both Caterpillar and Perkins. SCR will also be used across its entire range of off-highway engines above 56kW for Tier 4 Final with DPF optional on all engines.

				_							
	200	07	200)8	200)9	201	.0	201	1	
	Units	%									
Caterpillar	194	24	128	17	135	22	142	20	141	20	
Komatsu	94	12	97	13	75	12	99	14	89	13	
Takeuchi	75	9	86	11	73	12	70	10	67	10	
Volvo	60	7	69	9	62	10	66	9	66	9	
Hitachi	71	9	54	7	53	9	74	10	54	8	
Liebherr	37	5	48	6	27	4	41	6	43	6	
New Holland	50	6	47	6	25	4	25	4	41	6	
Wacker Neuson	32	4	22	3	18	3	24	4	39	6	
Kobelco	63	8	71	9	49	8	45	6	25	4	
Kubota	11	1	37	5	16	3	44	6	25	4	
Case	6	1	-	-	-	-	-	-	22	- 3	
JCB	-	-	14	2	5	1	9	1	17	2	
Hyundai	30	4	17	2	15	2	20	3	16	2	
IHI	-	-	14	2	18	3	18	3	14	2	
Yanmar	11	1	25	3	17	3	12	2	13	2	
Terex	3	-	5	1	2	-	7	1	8	1	
Mecalac	-	-	-	-	-	-	-	-	8	1	
Doosan	16	2	15	2	9	1	8	1	8	1	
Nagano	2	-	1	-	-	-	-	-	-	-	
Kato	48	6	-	-	18	3	-	-	-	-	
Bobcat	5	1	-	-	-	-	-	-	-	-	
Total	808	100	750	100	617	100	704	100	696	100	

Table 21. Switzerland: Suppliers of Crawler Excavators and <u>Their Market Shares, 2007-2011</u> (Unite)

INFRAS | NRMM as PM source in Switzerland | June 16, 2016 | B. Notter, P

Methods: DPF use on contruction sites (OAPC)

In-Kraft-Treten und Übergangsfristen der LRV-Bestimmungen

Leistung der Maschine	Baujahr	LRV-Konformität notwendig ab
ab 37kW	ab 2009	1. Januar 2009
	2000-2008	1. Mai 2010 auf B-Baustellen: 1. Januar 2009
	vor 2000	1. Mai 2015
18kW-37kW	ab 2010	1. Januar 2010

DPF-Ausstattung Baumaschinen auf Baustellen

SizeCLass	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
<18 kW	3%	3%	3%	3%	3%	3%	3%	6%	9%	15%	3%	3%	3%	3%	3%	3%
18–37 kW	11%	17%	23%	28%	34%	46%	57%	69%	80%	90%	100%	100%	100%	100%	100%	100%
>37 kW	28%	35%	42%	49%	58%	85%	89%	92%	95%	97%	100%	100%	100%	100%	100%	100%
56–75 kW	28%	35%	42%	49%	58%	85%	89%	92%	95%	97%	100%	100%	100%	100%	100%	100%
75–130 kW	28%	35%	42%	49%	58%	85%	89%	92%	95%	97%	100%	100%	100%	100%	100%	100%
130–300 kW	28%	35%	42%	49%	58%	85%	89%	92%	95%	97%	100%	100%	100%	100%	100%	100%
300–560 kW	28%	35%	42%	49%	60%	85%	89%	92%	95%	97%	100%	100%	100%	100%	100%	100%

=LRV18-37 kW

= LRV > 37 W, Baujahr ab 2009

= LRV > 37 kW, inkl. Baujahre vor 2000

= LRV > 37, Baujahr ab 2000

INFRAS | NRMM as PM source in Switzerland | June 16, 2016 | B. Notter, Ph. Wüthrich, J. Heldstab

Methods: DPF ex-works, EU-IIIB/IV

Manufacturer	Stage EU-IIIB / US Tier 4 Interim	Stage EU-IV / US Tier 4 Final
AGCO	No	No
Caterpillar	Partially	Yes
CNH	No	No
Cummins	Partially	Partially
Deutz	Partially	Yes
IHI	No	No
Isuzu	Partially	No
John Deere	Partially	Yes
Komatsu	Partially	Partially

DPF-Ausstattung ab Werk nach Grössenklassen für EU3B-4, Baumaschinen

DPF-Ausstattung ab Werk nach Grössenklassen für EU3B-4, Maschinen in Land- und Forstwirtschaft

Methods: Shares of activity on construction sites

Maschinenkategorie	Anteil auf Baustellen
Strassenfertiger	100%
Rammbären aller Art mit Hydraulik-Aggregaten	95%
Walzenzüge aller Art	100%
Vibratoren maschinell	100%
Stampfer, Vibratoren handgeführt	100%
Hydraulik-Bagger	93%
Minibagger	67%
Raupenbagger	85%
Radbagger	85%
Seilbagger	100%
Pneu-/Mobilkräne	100%
Grader	95%
LKW ohne Strassen-Zulassung	100%
Planierraupen	75%
Lader (Pneu & Raupen) aller Art	60%
Dumper/Kipper	96%
Notstromaggregate/Generatoren	100%
Pumpen aller Art	95%
Kompressoren aller Art	100%
Hubarbeitsbühnen	100%
Tunnel-Lokomotiven	100%
Beton-/Belagfräsen	100%
Grabenfräse	95%
Bohrgeräte aller Art (spez. Tiefbau)	95%

INFRAS | NRMM as PM source in Switzerland | June 16, 2016 | B. Notter, Ph. Wüthrich, J. Heldstab

Results: Activity and energy consumption, 2015

INFRAS | NRMM as PM source in Switzerland | June 16, 2016 | B. Notter, Ph. Wüthrich, J. Heldstab

Results: Comparison road vs. non-road, 2015

	Non-road mobile machinery [t/a]	Road transport [t/a] ^{*)}	Share of NRMM in total (road + non- road)
Consumption			
Diesel	352'100	2'057'000	15%
Petrol	40'000	2'425'900	2%
Energy	17.9 PJ	183.8 PJ	9%
Emissions			
Carbon monoxide (CO)	35'600	90'800	28%
Hydrocarbons (HC)	2'730	12'580	18%
Nitrogen oxides (NO _x)	7'600	32'240	10%
Particulate matter (PM)	359	737	33%
Carbon dioxide (CO_2)	1'248'000	14'132'700	8%

Sources of uncertainty

- Stock and operating hours: Based on official data sources and market studies for larger machinery, large degree of estimation for smaller devices
- Emission technologies used (especially DPF): Mainly uncertain for agriculture (only half of market covered by studies consulted, unknown impact of cantonal measures/incentives for retrofitting)
- Load factors: One of the greatest sources of uncertainty. For construction machinery, energy consumption decreased by 16% after adapting load factors based on Fridell et al. (2014)
- Emission factors: Scarcity of emission measurements, therefore reliance on type approval data and estimates. Large sensitivity especially for later Euro stages (from IIIB) leads to uncertainty to which extent modelled emission reductions are achieved in reality
- Transition towards electric motors: Subject to speculation at the moment
 INFRAS | NRMM as PM source in Switzerland | June 16, 2016 | B. Notter, Ph. Wüthrich, J. Heldstab