The wind, the traffic and the buildings: the role of the built environment in determining air pollution exposures

Suzanne Paulson

Department of Atmospheric and Oceanic Sciences & IoES

UCLA

Very Small Particles: lots of spatial heterogeneity

Ultrafine particles are mostly from vehicular emissions. They disappear In around a half an hour: rather than magically going away, they collide and stick to fine particles. As a result, they are highly elevated around roadways compared to everywhere else.

Hotspots in urban areas

Measurement Design

Dealing with the mobile data

- Mobile data gives spatially heterogeneous measurements; sometimes you get 30 in one spot, and sometimes one every 20 m.
- Simple averaging of mobile data (after correction for the wandering GPS signal) ends up looking like a trail of confetti after a parade route.

Using a line-reference system

- Divide the street into a grid with reference points every x meters.
 - Each reference point gets 1 value per run. If there are 30 data points, they are averaged. If there are no data points, we interpolate one.
 - This avoids under/overweighting individual "runs" on the route.

At high spatial resolution, mostly see the effects of accelerations around traffic stops.

Need ~20 repeats under similar met conditions to get a reasonable average

Ranasinghe et al. AAQR (2016)

What is the effect of the built environment at the block/neighborhood scale on pollutant concentrations at the street?

Olive & 12th Site (Street view: heading to South)

Site 2: One isolated tall building with low traffic

Olive & 12th Site (Street view: heading to North)

Site 3: One isolated tall building with high traffic

Vermont & 7th Site (Street view: heading to West)

Site 4: Intermediate buildings in one side and low buildings in the other side of the street

Wilshire & Carondelet Site (Street view: heading to East)

Site 5: All single story buildings

Temple City & Las Tunas Site (Street view: heading to North)

Built environment quantitative descriptors

	Broadway	Olive St.	Vermont	Wilshire	Temple City
	&	&	&	&	&
	7th	12^{th} St.	7^{th} St.	Carondelet	Las Tunas
	(Site1)	(Site2)	(Site3)	(Site4)	(Site5)
# of buildings	59	34	90	44	143
Max. building height (m)	58	129	80	57	8
Mean building height, H_{bldg} (m)	34	21	11	18	5
Bldg area weighted height, H _{area} (m)	40	42	25	24	6
Bldg. homogeneity, H _{ared} /H _{bldg} (dimensionless) (1=perfectly homogeneous)	1.16	2.01	2.21	1.39	1.09
Mean building ground area (m²)	1,030	1,395	585	992	225
Street width (m)	26 (BW) / 22 (7 th)	28 (Olive) / 17 (12 th)	30 (Ver) / 25 (7 th)	17 (Car) / 37 (Wil)	24 (TC) / 30 (LT)
Simple Aspect ratio (H_{area}/W_{street})	1.7	1.9	0.9	0.9	0.2
Block length (m)	190 (BW) / 100 (7 th)	180 (Olive)/ 95 (12 th)	190 (Ver) / 95 (7 th)	160 (Car) / 75 (Wil)	175 (TC) / 115 (LT)
Ratio occupied by bldg.	0.72	0.42	0.33	0.46	0.30

Intersection PNC (Stationary) vs. Over the site average PNC (Mobile)

Higher traffic \rightarrow higher UFP, except at the two sites with extreme built-environments, homogeneous & high or low: the street canyon (*Site1*) and the low, flat bldg. canopy (*Site5*).

(a) Morning

(b) Afternoon

Best Explanatory Factor in the Morning: The "Areal Aspect Ratio" = Length scale of buildings over length scale of open space

 H_{bldg} H_{bldg} H_{bldg} Ar $\frac{1}{L_{diag} \times \left(1 - \sum S_{bldg} / A_{site}\right)} - \frac{1}{L_{diag} \times \left(A_{open} / A_{site}\right)}$ area 1400 [UFP] (*particles.cm⁻³) /* Traffic flow rate (veh..min⁻¹) 200 H_{bldg}: Mean area-weighted building height 000 \$ L_{diag}: Diagonal length of 800 block S_{bldg}: Building surface area ☆ 600 A_{site}: Area of the sampling \bigcirc site 400 Site 1 Site 2 A_{open}: Area of the open Site 3 200 space in sampling site Site 4 Site 5 0L 0 0.2 0.4 0.5 0.7 0.1 0.3 0.6 Choi et al., 2016 0.8 Areal aspect ratio (Ar_{area})

Best Explanatory Factor in the Afternoon: Turbulence strength (vertical fluctuations of surface winds, σ_w)

Best Explanatory Factor in the Afternoon: Turbulence strength (vertical fluctuations of surface winds, σ_w)

Appears to be from non-local emissions

The effects of building heterogeneity on turbulence in the afternoon:

Higher building heterogeneity appears to enhance surface turbulence, under conditions with moderate winds and an unstable atmosphere

Summary for Planners:

Built environment and traffic management design characteristics that influence near-roadway exposures to vehicular pollution

Management	Suggested Direction	Approx. Size of	Atmospheric Conditions &	
		Effect	Notes	
Areal aspect ratio (A _{area})	Lower building volumes	Up to approximately	Important under calm	
A _{area} combines building area-	and more open space	a factor of three.	conditions (in the mornings	
weighted height, building	result in lower pollutant		at our sites). Not critical	
footprint, and the amount of	concentrations.		when the atmosphere is	
open space.			unstable.	
Building Heterogeneity	Isolated tall buildings	Up to approximately	Important under unstable	
	result in lower	a factor of two.	conditions with moderate	
	concentrations than		winds (afternoons at our	
	homogeneous shorter or		sites). Not critical when the	
	higher buildings with		atmosphere is stable.	
	similar volume.			
Traffic flow	Lower traffic flow is better,	At a given location,		
	controlling for fleet mix.	concentrations are		
		roughly proportional		
		to traffic flow.		

Summary for Planners:

Built environment and traffic management design characteristics that influence near-roadway exposures to vehicular pollution

Management	Suggested Direction	Approx. Size of Effect	Atmospheric Conditions & Notes
Traffic Management	Fewer stops and smaller queues reduce emissions and elevated concentrations around intersections	Cannot estimate from our data	Concentrations depend on emissions, micro-scale turbulence, dispersion, transport from nearby streets, and other factors
Sensitive uses near highways	Further is better, but under normal daytime conditions 500 feet is sufficient. If there are consistent nocturnal surface inversions, much longer distances are recommended.	Up to a factor of four or more.	Much more important during surface inversions, which usually occur during night and can persist through mid-morning.
Airports	Site residential and other sensitive uses far from airports.	Up to a factor of four or more	

The People Who Really Did the Work:

Dr. Wonsik Choi Dilhara Ranasinghe

With help from:

Karen Bunavage Dr. Meilu He Dr. Rodrigo Siguel (UTAM, Chile) **Prof. Arthur Winer** Prof. Mario Gerla Prof. Brian Taylor Dr. Kathleen Kozawa (ARB) Steve Mara (ARB) Lisa Wong Prof. J.R. DeShazo Nico Schultz (UCR) Si Tan (UCR) Prof. Akula Venkatram (UCR)

Supported by the California Air Resources Board, and the National Science Foundation

Thank you for your attention