

Field Evaluations of Diesel Particulate Filter conditions using concentration of solid particle number in Bogotá.

Jaime Rueda, Edgar Molano, Hugo Sáenz

Secretaría Distrital de Ambiente, Bogotá, Colombia.

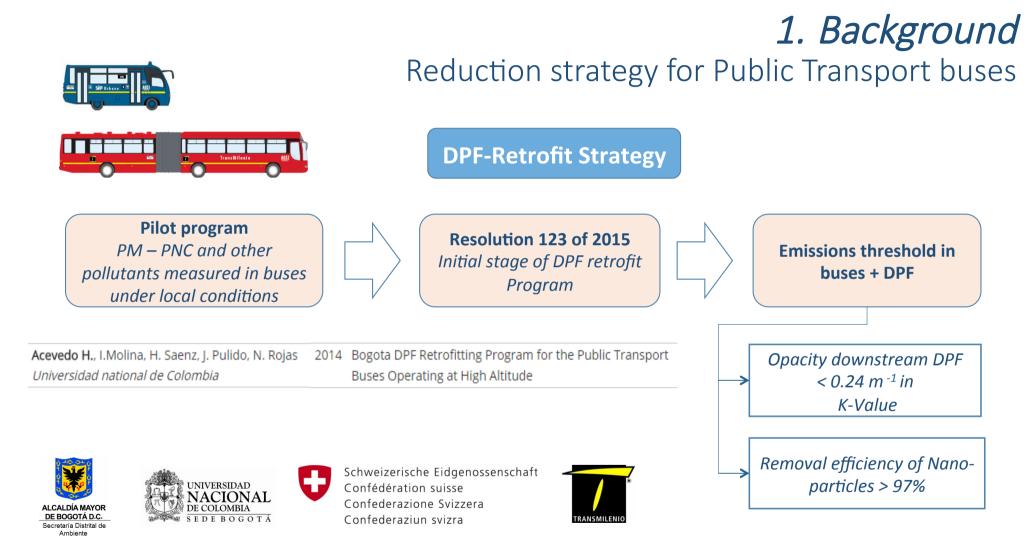
June 2016

SECRETARÍA DISTRITAL DE AMBIENTE

- 1. Background
- 2. Objectives
- 3. Methodology
- 4. Results
- 5. Conclusions

1. Background

1. Background Ten-year Air Decontamination Plan for Bogotá City


9 - 10.82

10,82 - 12,72

12,72 - 14,70

14,70 - 16,76 16,76 - 18,90

18,90 - 21,13 21,13 - 23,45 23,45 - 25,87 25,87 - 28,38 28,38 - 31

2. Objectives

2. Objectives

1. To stablish a field measurement protocol for opacity and solid particle number concentration.

Considering different test conditions regarding the engine speed and load.

2. To compare PM2.5, the opacity and the solid particle number metrics.

All equipments designed to operate in field conditions

3. To compare results from several emission levels in buses.

Euro II, Euro III, Euro IV, Euro V


Euro II+DPF, Euro II+DPF

Visual indicator of PM emission in Transmilenio buses with and without DPF – 2015. **7**

3. Methodology

3. Methodology

Equipment principle	Brand
Condensation Particle Counter – CPC	TSI 3795
Laser Light Scattering Photometry – LLSP – PM2.5 - Opacimeter.	Maha 6.2.1
Optical opacimeter	Capelec

Test conditions.

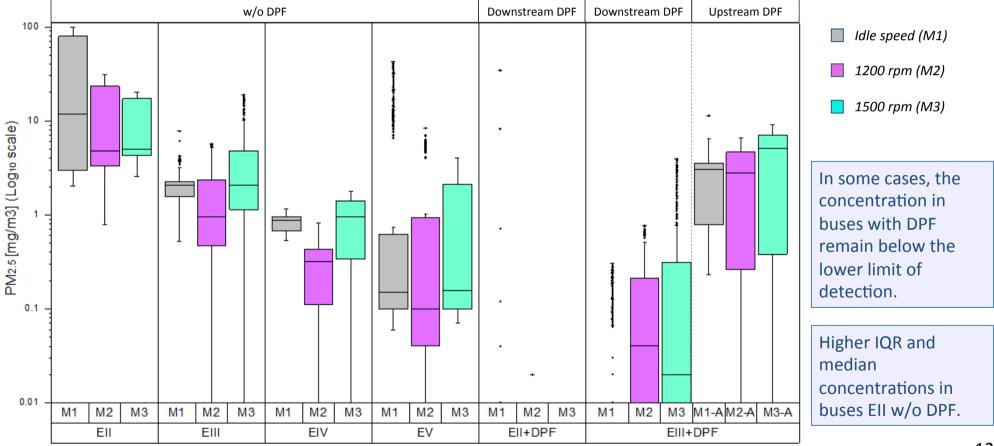
M1: Low idle. M2: 1200 RPM. M3: 1500 RPM. Mx-A: Upstream DPF.

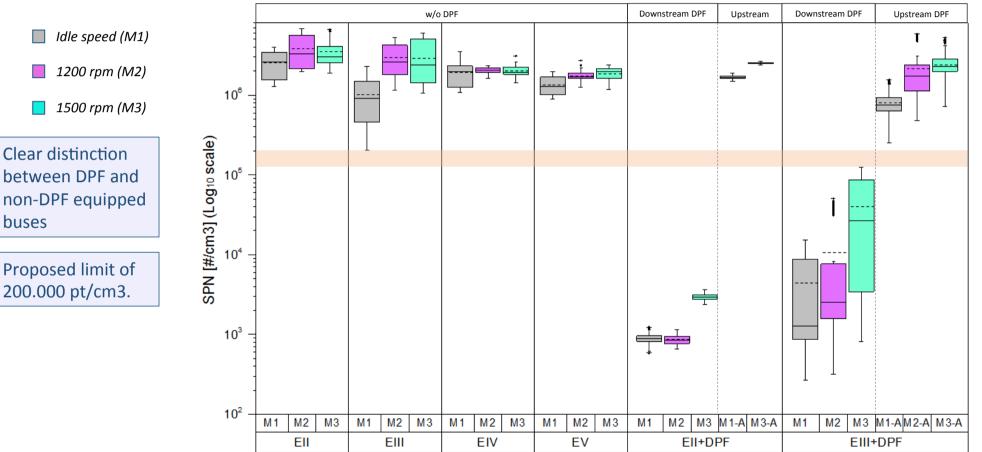
Stoll test. Opacity test.

3. Methodology

	СРС	LLSP Opacimeter	Optical Opacimeter
Test in Buses with DPF	146	71	16
Test in Buses without DPF	109	64	-

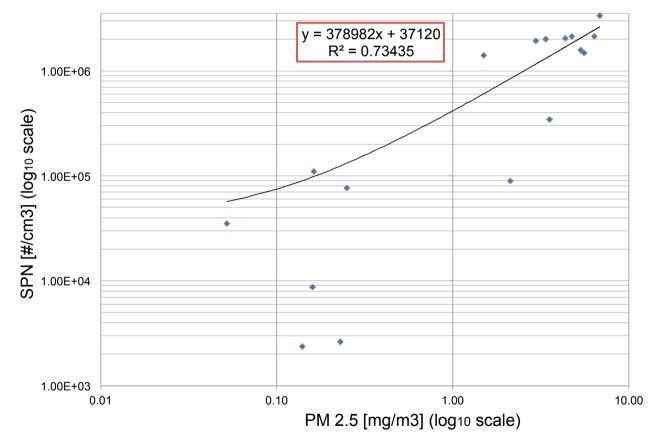
All performed test with equipment in parallel


Random selection in Buses without DPF


3 buses with DPF evaluated during different days

11

PM2.5 concentration by emission standard



Solid Particle Number measurements by emission standard

⁻13

Comparison between PM2.5 and SPN concentration

Good linear correlation between PM2.5 and SPN in high concentration levels.

SPN: best metric for DPF retrofit buses.

For non-filtered technologies, PM2.5 is a good metric

5. Conclusions

5. Conclusions

1. Considering the results, the entity already have a protocol to measure removal efficiency of nano-particles in idle speed, we expect to modify it including a threshold downstream DPF near to 200.000 #/cm3 and another steady state test conditions.

2. Comparison between metrics:

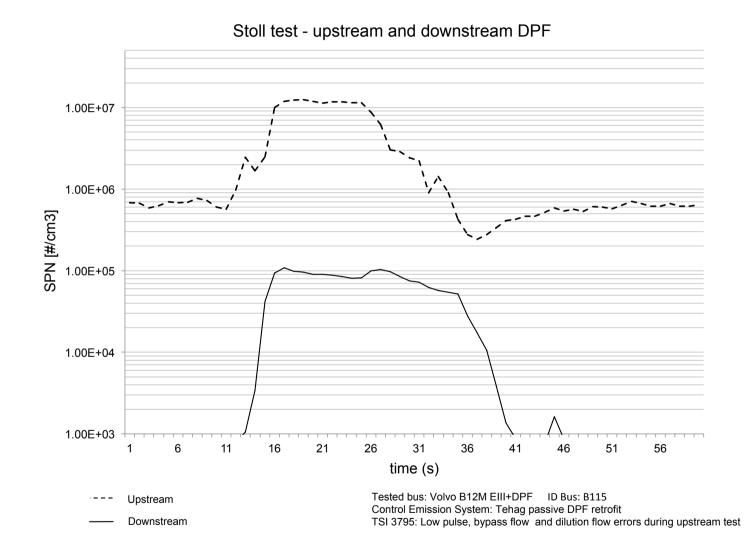
- SPN concentration is superior metric to be used in buses with DPF installed. Have a good behavior under steady state tests and downstream DPF.
- PM2.5 is a good metric for non-filtered technologies.
- Opacity has high error levels in buses+DPF. Recommended for non-penalty

3. Comparison between technologies of the fleet. Clear distinction of emission standards in SPN concentration results.

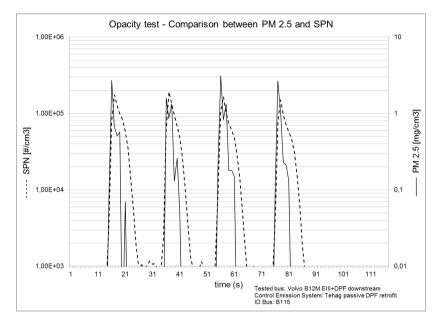
tests.

Acknowledgments

Agencia Suiza para el Desarrollo y la Cooperación COSUDE


- TSI Incorporated.
- Transmilenio S.A.
- Swiss Agency for Development and Cooperation.
- Universidad Nacional de Colombia.
- CALAC Clean Air for Latin American Cities.

Thank you


jaime.rueda@ambientebogota.gov.co Tel. (+571) 3778947

> Plan Decenal de Descontaminación del Aire para Bogotá 18

DISPLAYED ERRORS - MEASUREMENTS DOWNSTREAM IN BUSES WITH DPF

IN DOSES WITH DIT			
	BUS WI		
			% Valid Test
	Total	with error	
D1	9	3	66,7%
D-Stoll	9	5	44,4%
M1	12	3	75,0%
M2	13	3	76,9%
M3	12	3	75,0%
M-Chile	8	5	37,5%
M-Opa	13	6	53,8%
Total general	76	28	63,2%
% Valid Test	63,		

DISPLAYED ERRORS - MEASUREMENTS UPSTREAM IN BUSES WITH DPF, AND ALSO FOR BUSES WITHOUT DPF

DPF- upstream Bus	sin DPF	Total	with error	% Valid Test
D1-A		9	3	66,7%
D-Stoll-A D-St	toll	4	4	0,0%
M1-A M1		44	20	54,5%
M2-A M2		42	15	64,3%
M3-A M3		39	10	74,4%
M- M-Chile Gob	ernada	12	7	41,7%
M-Opa-A M-C	Ора	9	6	33,3%
Total gene	eral	159	65	59,1%
% Valid Te	est	59,	1%	

Opacity comparison

#BUS	opa @ LTOE 430	Diferencia entre pruebas
K016+DPF	14,4521919	17,392
K016+DPF	9,00834069	14,265
K016+DPF	1,93583653	0,131
K016	94,2350005	0,911
S031	92,5764388	1,102
S031+DPF	1,62378463	0,255
K016	99,7853192	0,071
K016+DPF	69,0653824	1,756
K016+DPF	25,0641488	8,645
K016	67,3707536	0,383
K016	69,1841055	0,461
K016+DPF	23,7858318	0,294
K016	53,3456986	7,219
K016+DPF	31,4545197	6,703
B115	16,5183091	4,324
B115+DPF	0,14322732	0,129