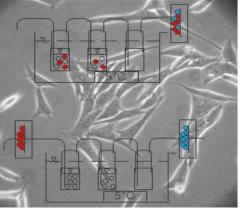


A simple sampling method to analyze cell toxicity of PM & COC from biomass combustion

P. Zotter¹, S. Richard², M. Egli², T. Nussbaumer¹

¹Lucerne School of Engineering & Architecture, Bioenergy Research Group, Horw

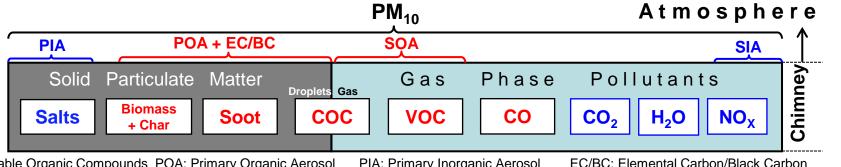

²Lucerne School of Engineering & Architecture, Aerospace Biomedical Science & Technology (ABSaT), Hergiswil

20th ETH-Conference on Combustion Generated Nanoparticles Zürich, June 15 2016

Lucerne University of Applied Sciences and Arts

HOCHSCHULE LUZERN

Engineering & Architecture

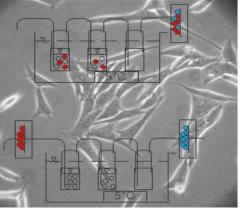


- 2. Methods
- 3. Results
- 4. Conclusions

HOCHSCHULE

Introduction - Background

- Wood combustion is a renewable energy source, however it contributes to air pollution and negatively impacts human health
 - Wood combustion contributes > 30% to carbonaceous matter in Europe and is the dominant source in Swiss Plateau and Alpine regions (Sandradewi et al., 2008; Lanz et al., 2010)
 - Fine particulate matter (PM) is linked to cardiovascular diseases, allergic & inflammatory conditions of the lung and increased mortality
- <u>Wood combustion emissions:</u>


COC: Condensable Organic CompoundsPOA: Primary Organic AerosolPIA: Primary Inorganic AerosolEC/BC: Elemental Carbon/Black CarbonVOC: Volatile Organic CompoundsSOA: Secondary Organic AerosolSIA: Secondary Inorganic AerosolProducts of complete & incomplete combustion

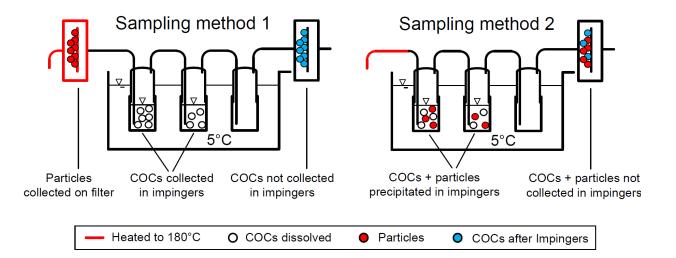
- In current emission legislation only solid PM in the hot flue gas is considered
- SOA and COC can exceed primary emissions

Introduction - Target

- Develop a method to characterize the cytotoxicity of wood combustion emissions, in particular with respect to COC
- The method should be simple to enable economically analysing a large number of samples for a comparison of many different combustion devices and conditions
- In addition, the effects of COC and solid PM shall be distinguished

2. Methods

- 3. Results
- 4. Conclusions

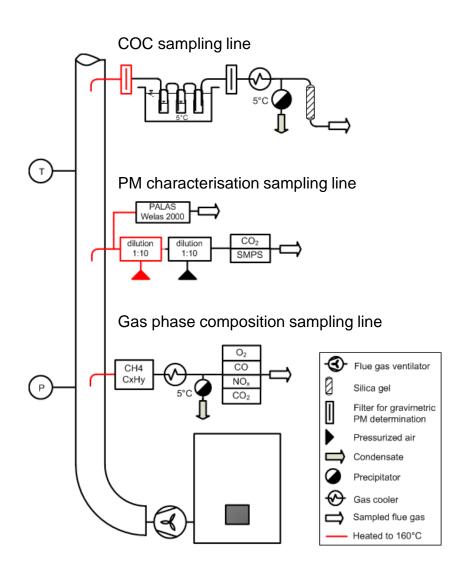

HOCHSCHULE

Methods – Development Approach

- Combine standard sampling procedures
 - US EPA 5H for PM and COC with quenching of hot flue gas into water
 - VDI 2066 for solid PM on a heated filter (e.g. for Swiss OAPC)
- Sampling in the Bioenergy laboratory in Horw
- Subsequent *in vitro* cell analysis in Biomedical laboratory in Hergiswil

Methods – Sampling

Picture of Impingers


Picture of Sampling Setup

- <u>Impinger fillings:</u>
 - Cell growth medium
 - Sterile water
- <u>2 parallel sampling lines:</u>
 - Filter upstream of impingers
 → COC only
 - No filter upstream of impingers
 → COC plus solid PM

Methods – Experimental Setup

- Gas phase emissions:
 - Combustion regime and efficiency
 - O₂, CO₂, CO
 - Organic compounds with FID:
 - CH₄, VOC, NMVOC
 - Nitric oxide emissions: NO
- Particles:
 - Solid PM mass according to VDI
 - Particle number concentration
 - Particle size distribution

Methods – Combustion Devices

Combustion devices

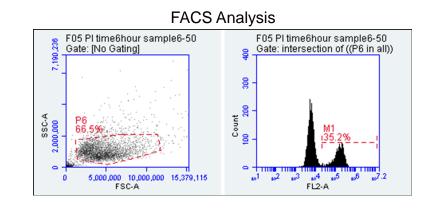
- Log wood stove (8 kW)
 - Reload and flaming
- Pellet boiler (15 kW)
 - Combustion air: optimum (λ_{opt}),
 lack (λ₋₋) and high excess (λ₊₊)
- Semi-industrial moving grate boiler (150 kW)
 - Operated with wood chips
 - 100% and 30% heat output

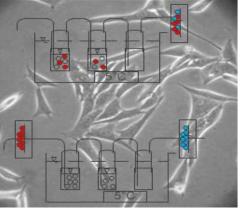
Picture of Combustion Laboratory

Log wood stove

Pellet boiler

Semi-industrial grate boiler

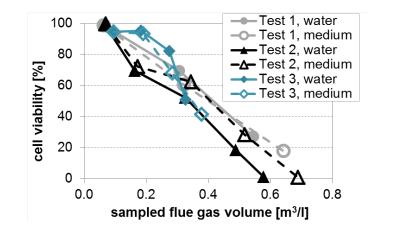

Methods – In Vitro Cell Analysis


<u>C2C12 cell line</u>

- Skeletal muscles cells from mice (5000 cells/cm²)
- Used for initial tests
- H187 cell line
 - Human epithelial lung cells (15 000 cells/ml)
 - Used for comparison of different devices
- Cell analysis and biological endpoint:
 - Mixing of exposed liquids with "fresh" medium at different concentrations
 - 24h cell exposure
 - Staining of dead cells Propidium Iodide (PI)
 - Number of dead cells is measured with FACS

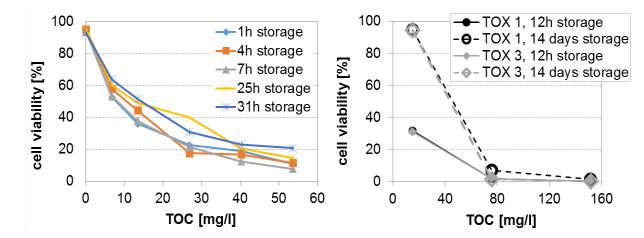
Biomedical Laboratory

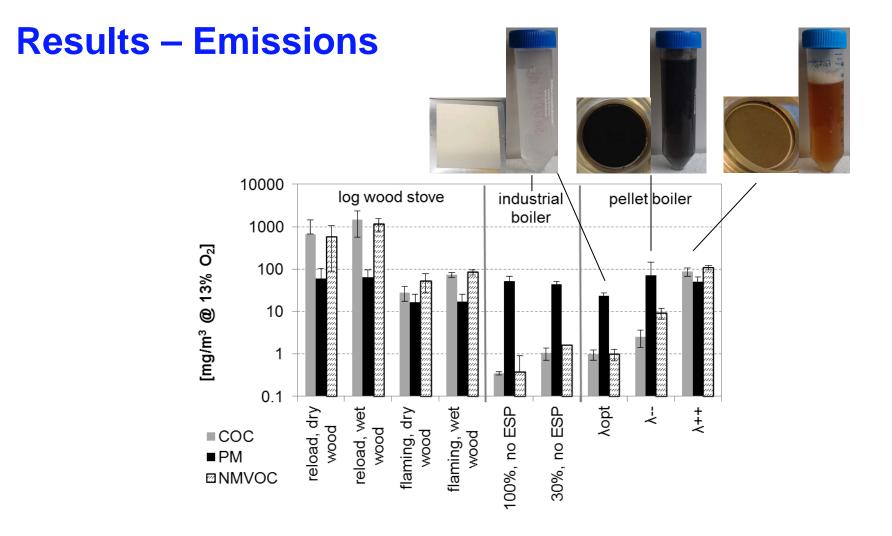
- 1. Introduction
- 2. Methods



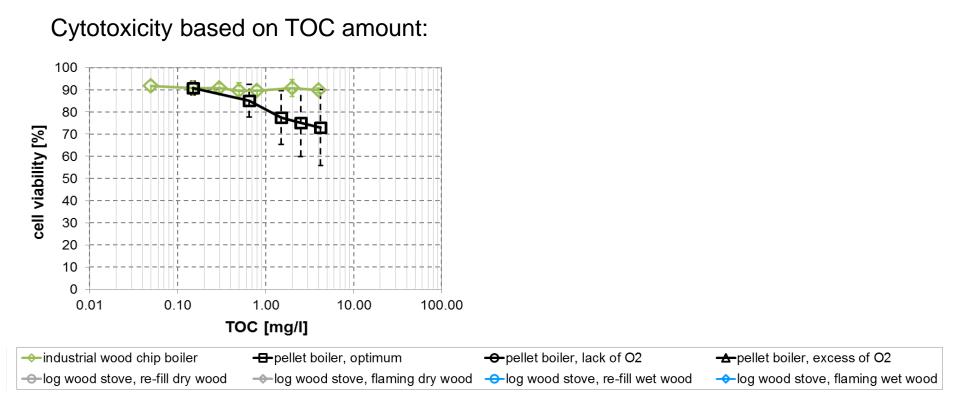
- 4. Conclusions

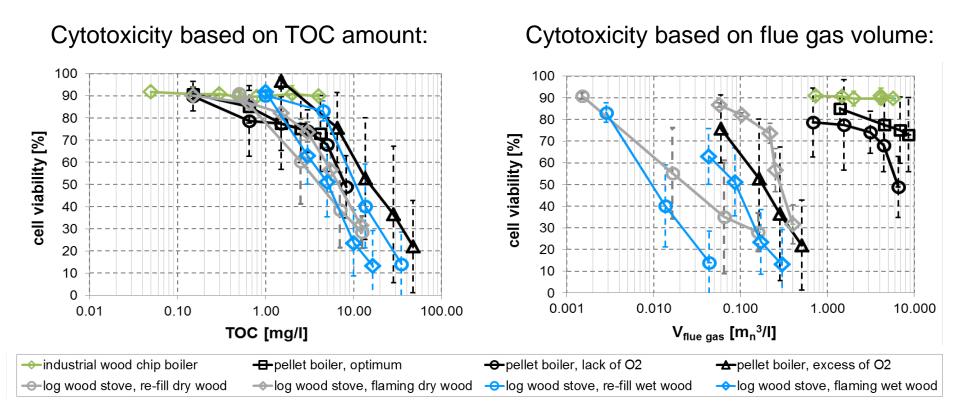
HOCHSCHULE


Results – Method Characterisation


- Characterisation performed with the pellet boiler due to its well reproducible conditions
- No difference in cell viability between C2C12 and H187 cell lines found
- Sampling liquid (sterile water vs. RPMI)
 - No influence on cell viability
 - Sterile water used in subsequent experiments to enable TOC analysis

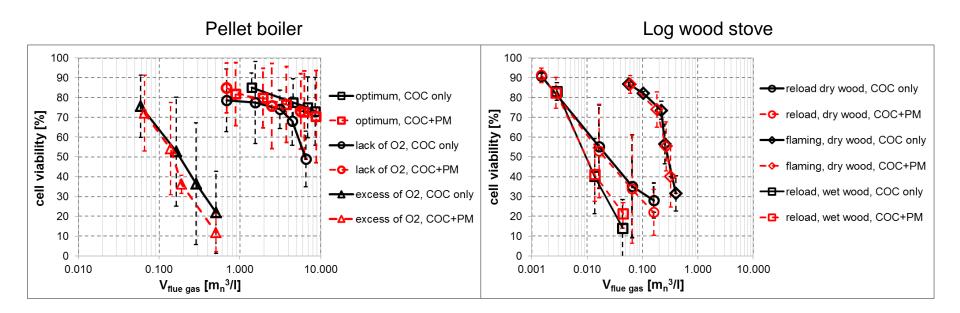
<u>Storage effect</u>

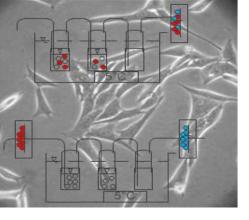

- Duration between sampling and cell exposure
- No difference within first 31h
- Decreased cell viability after 2 weeks
- → Start of cell exposure ~12h after sampling


- Highest emissions in log wood stove and non-ideal operation in pellet boiler
- High COC with high NMVOC emissions
- COC > solid PM in hot flue gas for several conditions

Results – Cell Viability of COC

• No and low effect for industrial and pellet boiler with λ_{opt}


Results – Cell Viability of COC


- No and low effect for industrial and pellet boiler with λ_{opt}
- Significant cytotoxicity for stove and λ₊₊ and λ-- conditions in pellet boiler
 - Differences between these conditions are low (LD50 ~ 4 – 15 [mg/l])

- Clear differences between
 combustion devices and conditions
- Cytotoxicity ordered accordingly from highest to lowest NMVOC concentrations in flue gas

Results – Cell Viability of solid PM

- Samples containing PM+COC reveal similar cytotoxicity as samples with COC only
- → Cytotoxicity of solid PM compared to COC seems negligible, but applied in-vitro method might not be sensitive enough to detect effect from solid PM
 - Fraction of TOC from solid PM to total TOC in sampling solution is < 20%
 - Negative controls contain on average already ~ 10% dead cells

- 1. Introduction
- 2. Methods
- 3. Results

4. Conclusions

Conclusions

- Method for assessing cytotoxicity of wood combustion emissions by in vitro cell analysis of COC and PM was successfully established and characterised
- Simple setup and procedures allow an economically analysis of a large number of samples enabling a comparison of different combustion types
- Three different combustion devices with 9 different conditions were investigated
- Cytotoxicity based on TOC amount:
 - No and low effect for industrial moving grate and pellet boiler during optimum operation
 - Significant for log wood stove and non-ideal conditions in the pellet boiler but differences between these conditions are low
- Cytotoxicity based on sampled flue gas volume:
 - Clear difference between combustion devices and conditions (2-3 orders of magnitude)
 - Higher cytotoxicity for conditions with higher NMVOC emissions
- Samples with PM+COC reveal similar cytotoxicity as for COC only indicating the importance of COC

Acknowledgements

Funding agency:	Federal Office for the Environment (FOEN) Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra
Project advisor:	adolphe merkle institute UNIVERSITY excellence in pure and applied nanoscience UNIVERSITY
Combustion device manufactures:	Schmid energy solutions Tiba Tiba. Liebi LIEBIC Attika Feuer AG (future tests) Sigmatic AG (futur
Support in lab:	Adrian Lauber Simon Roth Jürgen Good HOCHSCHULE

THANK YOU FOR YOUR ATTENTION