Tehran UFP Study: Spatial and Temporal Distribution

Mohammad Javad Afroughi¹, Vahid Hosseini², Jason S. Olfert¹ ¹University of Alberta, Canada; ²Sharif University of Technology, Iran

- DiSCmini (Matter Aerosol, AG)
- Garmin Handheld GPS

larger PMs.

Wind Effect

ALBERTA

Wind speed and direction were adjusted based on the line that connects nearest major road to each monitoring station:

 $wind_speed_{adj} = wind_speed \times \cos(\theta)$

Figure 1. Adjusted wind rose diagram for all diurnal measurements at monitoring stations

Diurnal samplings were mostly affected by proximity to a major road and wind direction

Spatial Variation of Ultrafine Particles

PNC (#/cm³

< 100.000

Figure 6. GIS-based mapping of PNC (left) and count mean diameter (right) of UFPs in mobile monitoring study area

Figure 2. Box plot of particle number concentration (PNC) as a function of adjusted wind direction and speed

PNC level of UFPs proportionally increased with the wind speed in positive direction (i.e. when a monitoring station is in the downwind direction of the nearest major road)

Traffic-distance Effect

Traffic density and distance of nearest major road to each sampling station were taken into account as a single parameter, k (vehicles/(hr.m)):

K = traffic volume/distance

Figure 4. Diurnal variation of PNC and count mean diameter of UFPs

- Daily average of PNC reached to 75,000 cm⁻³ with a mean diameter of 48 nm at roadside, compared to 45,000 cm-³ with a mean diameter of 54 nm at background stations.
- PNC increased monotonically during morning and evening rush hour peaks (~ 1.5 times of the PNC daily average).

PNC increased (mean-d decreased) drastically from streets with low traffic intensities (80,000 cm⁻³ and 40 nm) towards highways (622,000 cm⁻³ and 24 nm).

Spearman Correlation of Pollutants

The non-parametric spearman's ρ was used to correlate PNC with the concentration of other urban-derived pollutants and meteorological parameters.

Table 1. Spearman correlations

	PM _{2.5}	PM ₁₀	СО	NO ₂	O ₃	SO ₂	Temp.	R.H.	Adjusted Wind Speed
PNC	0.72	0.62	0.55	0.20	-0.42	-0.51	-0.43	0.21	0.35
st	t rong rela	1 ationshi	ip						

Conclusions

The diurnal pattern of UFPs revealed higher concentrations at both roadside and background stations, compared to clean large cities (e.g. Zurich).

- PNC level of UFPs proportionally increased with K
- PNC was significantly higher at roadside (K>50) compared to background stations (K<50)
- Figure 5. Ratio of PNC at roadside to residential background stations per hour
- Hourly average of PNC was approximately twice higher near major roads than residential areas during rush hour.
- Hourly average of PNC at roadside stations increased monotonically between 2100h-0100h, due to increase of heavy-duty vehicle activities.
- Wind and traffic intensity play a crucial role in dispersion of UFPs, especially in highway environments.
- Taking a low traffic intensity road can decrease UFP exposure up to orders of magnitude.
- Heavy-duty vehicles are seemingly responsible for a large \bullet amount of UFP emissions, particularly around midnight.
- UFPs and larger PMs likely have similar source of emission and mechanisms of atmospheric dispersion in the city of Tehran.

References

- [1] Oberdörster, G., Sharp, Z., Atudorei, V., Elder, a, Gelein, R., Kreyling, W., & Cox, C. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16, 437–445.
- [2] Shannahan, J. H., Kodavanti, U. P., & Brown, J. M. (2012). Manufactured and airborne nanoparticle cardiopulmonary interactions: a review of mechanisms and the possible contribution of mast cells. Inhalation Toxicology, 24(5), 320-339.

Acknowledgment

This work was supported by Tehran Air Quality Control Company.

Contact

Mohammad Javad Afroughi University of Alberta Email: afroughi@ualberta.ca

21st ETH-Conference on Combustion Generated Nanoparticles, Zurich, Switzerland, June 19th - 22nd, 2017