

Effects of Fuel Composition on Aircraft Emissions: Results from NASA Ground and Airborne Experiments

B.E. Anderson; R.H. Moore; A.J., Beyersdorf; E.C. Crosbie; T. Shingler; L.K. Thornhill; E.L. Winstead; L.D. Ziemba NASA Langley Research Center, Hampton VA, USA

T. Jurkat, B. Weinziel, D. Sauer and H. Schlager DLR Institute for Atmospheric Physics Oberpfaffenhofen, Germany

Motivation for Research

- Aircraft generate large numbers of black carbon and secondary aerosol particles which impact air quality and climate
- Aircraft also emit CO₂ and create contrails which enhance climate warming
- Airline traffic is increasing 2-3%/year and will probably double in the next 20 years
- New nonvolatile PM and CO₂ standards are being adopted by ICAO to mitigate aviation impacts
- Sustainable alternative fuels and more efficient propulsion systems will be needed to meet new standards
- Studies are needed to characterize engine PM emissions and how they change with fuel composition

Recent NASA Studies to Investigate PM Emissions

Year	Project	Location	Test Article	Fuels
2008	PW308	West Palm Beach	Pratt PW308	Jet A, FT, 50% FT
2009	AAFEX-1	Palmdale	CFM56-2C	Jet A, FT (gas), FT (coal), 50% blends
2011	AAFEX-2	Palmdale	CFM56-2C	Jet A, HEFA, 50% HEFA, FT (gas), Sulfur dopant
2013	*ACCESS-1	Palmdale	CFM56-2C	Jet A, 50% HEFA
2014	*ACCESS-2	Palmdale	CFM56-2C	Jet A, 50% HEFA
2015	CONEX	Cleveland	Honeywell APU	Jet A, Alt Fuels, Blends
2016	*ECLIF-1	Manching Germany	IAE2527-A5	2 Jet A ref fuels, 4 Blends

* Flight Projects

Studies of NASA DC-8 CFM56-2C emissions during ground and airborne operations

Characteristics of Gas Turbine nvPM Emissions

Measurements from exhaust sampled 1-m behind engine exit plane.

Volatile PM Form Rapidly in Cooling Exhaust Plume

Mass of volatile aerosols dependent on fuel sulfur, ambient temperature and plume age

Nucleation Mode Continues to Grow with Age

- Studies show sulfur oxidation mostly independent of engine thrust
- Nucleation mode less prominent at high thrust levels because vapors tend condense on soot surfaces
- AMS data show organics have greater tendency to condense on soot-mode particles

AAFEX-I Results

Volatile PM Mass EI depends on Ambient Temperature

National Aeronautics and Space Administration

0.5 to 2% of Fuel S Oxidized to Sulfate in Exhaust

AAFEX-1 Demonstrated Alt Fuel Emission Reductions

Huge nvPM Emission Reductions Seen when Using Alt Fuels

Lack of Aromatics Reduces nvPM Size

Reduced particle size leads to greater reductions in mass than in number EI

Fuel blending reduces overall particle mass emissions index by 30-50%, both soot and SO4 mass are decreased by two-fold.

Pure JP8:

Ground Data

11

Engine Power (%)

ACCESS-2 Demonstrated Alt Fuel Emission Reductions at Cruise

See Moore et al., NATURE, 543, 411-415, 2017

50:50 HEFA: Jet A Blend Reduces Black Carbon Number and Mass Emissions by 30 to 70% at Cruise

Emissions Decrease with Increasing Fuel H Content

ECLIF-1 Experiment measured nvPM emissions from DLR A320 with IAE2527 engines in flight and during ground tests

Aircraft burned 6 different fuels with broad range of aromatic and hydrogen content

Papers and reports under development.....

Ground-based measurements show nvPM number and mass anti-correlated with fuel H content

ECLIF-1 Experiment measured nvPM emissions from DLR A320 with IAE2527 engines in flight and during ground tests

Aircraft burned 6 different fuels with broad range of aromatic and hydrogen content

Papers and reports under development.....

Summary

- Aircraft Typically Emit 10¹⁴-10¹⁵ nvPM per kg fuel burned during both ground and flight operations
- nvPM mass emissions range from 1 to 100 mg/kg fuel burned
- nvPM GMD and VMD range from 15-35 nm and 30 to 80 nm
- Volatile PM form rapidly in engine exhaust and typically outnumber soot by 10 to 1 in aged plumes
- ~0.5 to 2% of fuel S oxidized to form volatile PM
- Alternative fuels greatly reduce both nvPM and total PM emissions because of reduced aromatic and sulfur contents
- nvPM reductions anti-correlated with fuel Hydrogen content
- Low aromatic fuels produce smaller nvPM; combined with lower number, could significantly alter contrail ice number and size.

Questions?

Future Work: Emission and Climate Impact of Alternative Fuel—ECLIF-2, January-February 2018