

AECC/Concawe 2016 GPF RDE PN Test Programme: PN Measurement Above and Below 23nm

Jon Andersson¹, Joachim Demuynck², Heather Hamje³

(1) Ricardo UK; (2) AECC; (3) Concawe

21st ETH-Conference on Combustion Generated Nanoparticles June 19th - 22nd, 2017, ETH Zurich, Switzerland

- Introduction
- Objectives
- Measurements
- Test Cycles
- Results
- Conclusions

Introduction

- The introduction of Real Driving Emissions (RDE) and the inclusion of a Particle Number (PN) limit for direct injection gasoline (GDI) vehicles has accelerated the development of Gasoline Particle Filters (GPF)
 - GPFs are expected to appear on mass-market production vehicles during 2017
- As part of a larger programme exploring exhaust emissions under RDE, a 1.4 litre Euro 6b stoichiometric lambda 1 GDI was tested in standard build, and when retrofitted with a catalysed-GPF
- Particle number measurements were made of >23nm "PN₂₃" and >7nm "PN₇" size ranges to explore emissions levels and filtration impacts under a range of operating conditions

- Introduction
- Objectives
- Measurements
- Test Cycles
- Results
- Conclusions

PN-related Objectives

- To measure PN emissions from Real Driving Emissions (RDE) tests transposed to a chassis dynamometer and evaluate impact of moving towards RDE boundary conditions, including:
 - Normal and reduced test temperatures: 23°C, 0°C, -7°C
 - Dyno load changes: ~ road load, ~25% increase, ~50% increase
- To assess the impact of a specific GPF on PN emissions
 - Including impact on PN _{↑7} and PN_{↑23}, if different
- Extras
 - To compare magnitude of PN-PEMS and CVS-based PN emissions
 - To assess any impact of a TWC on PN reduction

- Introduction
- Objectives
- Measurements
- Test Cycles
- Results
- Conclusions

PN Systems' Sampling Configurations 2 raw systems, 2 dilute systems, >7nm system, 3 x >23nm systems

	Initial dilution	Pre- classifier	PND ₁ (diluter#1)	Volatile Removal	PND ₂ (diluter#2)	PNC (counter)
4: Raw PN-PEMS (prototype)	[-]	1µm	dilution 10 ambient	DOC 350°C	dilution 10 ambient	d50 23nm
3: Raw SPCS	dilution 10 ≤350°C	<10µm	dilution 10 ~190°C	Evap tube 350°C	dilution 15 < 35°C	d50 23nm
2: <i>Dilute</i> Catalytic Stripper	CVS (<30)	[-]	[-]	DOC 350°C	[-]	d50 7nm*
1: Dilute SPCS	CVS (<30) <52°C	<10µm	dilution 10 ~190°C	Evap tube 350°C	dilution 15 < 35°C	d50 23nm

^{*}The emissions levels recorded with the 7nm d50 CPC were corrected for losses in the catalytic stripper

- Introduction
- Objectives
- Measurements
- Test Cycles
- Results
- Conclusions

Test Cycles

- Regulatory Test Cycles at 23°C conducted at dyno load <u>consistent</u> with real road load
 - NEDC
 - WLTC
- Real Driving Emissions (RDE)
 - Based upon actual valid on-road drive
 - EMROAD processing of RDE using WLTC cycle conducted above
 - On road cycle then transposed to dyno, driven and reprocessed in EMROAD
 - CO₂ levels from on-road and ondyno very close

- Real Driving Emissions (RDE) performed on dyno with increased acceleration rates
 - Nominated as SRDE (Severitized RDE)
 - Minimal increase in dyno load
 - SRDE L at 23°C
 - SRDE L0 at 0°C
 - SRDE_L-7 at -7°C
 - ~25% increase of dyno load
 - SRDE M
 - ~50% increase of dyno load
 - SRDE_H [also 0°C & -7°C]
- SRDE variants tested with and without GPF

EMROAD outputs for On-dyno RDE: SRDE_L, SRDE_M, SRDE_H

 SRDE approach allows the valid RDE "space" to be explored within the controllable environment of the test laboratory

11

- Introduction
- Objectives
- Measurements
- Test Cycles
- Results
- Conclusions

CVS (dilute) and Raw >23nm PN sampling appear sufficiently similar to be considered equivalent

- Comparison of raw and dilute SPCS systems indicates <5% difference
- CVS levels are slightly higher
 - May indicate CVS background contribution not present in raw sample
 - Other differences exist though
 - Additional raw diluter
 - Different preclassifier

12

3-4% difference between raw and dilute SPCS 8.00E+11 v = 0.9674x7.00E+11 $R^2 = 0.9596$ 6.00E+11 5.00E+11 4.00E+11 3.00E+11 2.00E+11 1.00E+11 Non-GPF sampling 0.00E+00 0.00E+00 5.00E+11 1.00E+12 >23nm CVS SPCS

Prototype PN-PEMS system shows good correlation with CVS-based $PN_{\uparrow 23}$ system, but ~20% higher levels

- Draft RDE regulation requires measured PEMS emissions to be ±50% of CVS levels
 - Easily achieved
- Higher PEMS-PN levels indicative of differences in:
 - Methodology for corrections of losses
 - Absolute losses (raw v dilute)
- Good linearity of relationship allows 'correction' of PN-PEMS data to simulate CVS levels from raw exhaust

The Three-Way Catalyst (TWC) is not a major source of particle removal or loss

- Equating non-GPF measurements from the raw SPCS (pre-TWC) with the 'corrected' tailpipe PN-PEMS shows <5% difference
- Losses / elimination of particles in the TWC are <10%
 - With the difference between raw and dilute SPCS factored-in

0°C and -7°C SRDE PN_{↑23} data, based upon CVS measurements

Error bars = 1σ of 3 repeats of SRDE M

using dilute SPCS

2.00E+11

1.00E+11

0.00E+00

15

 $PN_{\uparrow 23}$ levels rise as cold-start temperature reduces

- Larger rise 23°C to 0°C than from 0°C to -7°C
- Post-GPF PN levels rise by ~80% with each step from SRDE_L to SRDE_M to SRDE_H
- Engine-out PN levels from all conditions equal to, or in excess of CF=1.5
- Post-GPF PN₂₃ levels below CF=1 from all SRDE

Relationship between total $PN_{\uparrow 7}$ and total $PN_{\uparrow 23}$ changes when specific GPF is applied

- CVS-based measurements of PN_{↑7} and PN_{↑23} show that all post-GPF tests' emissions were below the Euro 6c limit
 - NEDC, WLTC and SRDE_L,M &H testing
- When a GPF is applied, the differential between the number of particles >7nm and the number of particles >23nm is minimised
- The GPF appears to preferentially trap the smallest particles
 - Diffusion collection mechanism dominates

GPF efficiencies for >23nm particles range from ~60% to ~80%, but are exceeded by >7nm efficiencies (70% to >90%)

17

 Observed increase in filtration efficiency between >7nm and >23nm ranges indicates larger increase for 7nm to 23nm range in isolation (>95%)

- Introduction
- Objectives
- Measurements
- Test Cycles
- Results
- Conclusions

Conclusions

- The addition of a GPF enabled the regulatory limit value for GDI vehicles (6x10¹¹#/km) to be achieved, for PN₂₃, from standard chassis dyno cycles and very demanding RDE conditions, including high load and low temperature tests
- Increases in engine-out PN of >50% were seen when extending the measurement range from d50=23nm down to ~7nm, but with a GPF in place this differential dropped to ~20%
 - The GPF tested appears especially efficient for <23nm PM
- CVS (dilute) and Raw PN_{↑23} lab-based PN sampling (the latter currently being considered as an option for certification testing) appear sufficiently similar to be considered equivalent in the configurations used at Ricardo
- >23nm PN-PEMS particle number emissions proved to be ~20% higher than CVSbased levels, due to lower sampling losses
 - but agreement is well within the ±50% range permitted for regulatory correlation

Acknowledgements

20

- Thanks to:
 - AECC members
 - Concawe members
 - Staff at Ricardo
 - Simon de Vries
 - Carl Jemma

