Carbonaceous, Organic and Toxic Metals Components of Particles and Their Seasonal Trends in Tehran, Iran

Mohammad Arhami^a, Vahid Hosseini^a, Maryam Zare Shahne^a, Alexandra Lai^b, James J. Schauer^b

^a Sharif University of Technology, Tehran, Iran
 ^b University of Wisconsin-Madison Madison, WI, USA

INTRODUCTION AND OBJECTIVES

Tehran megacity, capital of Iran and the nation largest metropolitan area, is one of the world's most polluted cities. During recent years about one-third to half of the days each year were reported polluted, mainly due to $PM_{2.5}$ exceeding national standard levels. These particles contain chemical contents such as organic trace elements, toxic metals and carbonaceous

Sampling sites

- Sharif University of Technology (residential station), in central-west part of Tehran (35.7° N and 51.4° E).
- This air quality station is a part of Tehran's air quality station network operated by Air Quality Company.

METHODOLOGY

Sampling schedule

- **24-hour** $PM_{2.5}$ samples were collected in Tehran **every 6 days** for a **full year** from February 2014 to February 2015.

Chemical analyses

components particularly in the nanoparticles size fractions with major effects on population health. Hence, it is essential to determine the components of these particles. The present study aims to identify the major components including organic and elemental carbon and heavy metals of $PM_{2.5}$ and their temporal variations in Tehran.

Equipment

- Two sets of samples were collected concurrently on quartz fiber (47 mm diameter, Whatman Inc.) and Teflon filters (47 mm diameter, PTFE Teflon, Pall Life Science)
- Two low-volume ambient air samplers (PQ200 by BGI, Inc., USA).

RESULTS AND DISCUSSION

The main constituent of airborne particles were determined to be **carbonaceous components** (organic matter and elemental carbon) with mean contribution and concentration of 47% and 11.32±2.52 µgm⁻³, respectively.

Organic matter and EC together comprised 44% of fine PM on average (increased to >70% in the colder season), indicates the significance of **anthropogenic urban sources** in Tehran (mainly combustion by mobile sources), which are also known as important sources of nanoparticles.

The most abundant heavy metals were **Zn and Pb**, with maximum monthly averages of 0.23 and 0.19 μ g/m³, respectively.

These components generally had higher levels in cold seasons due to several reasons such stable atmospheric conditions.

Most of these metals and organics are mainly originated from fuel oil combustion, break abrasion, and tire wear.

Benzo(b)fluoranthene
Coronene
Chrysene

Indeno(1,2,3-cd)pyrene

The variations of PAHs levels are presented in Fig 3. Annual average concentration of total PAHs in samples was 10.10 ± 0.47 ng/m³. Although the total concentrations of PAHs, with a mean contribution of 0.03 % play a minor role in PM_{2.5} mass in Tehran, they potentially can have a destructive effect in human health because of their carcinogenicity.

High levels of these PAHs were obtained in **cold months**, particularly in February, where concentrations reached up to four times more than levels recorded in summer. Total PAH concentration varied from 3.92 ng/m³ during warmer season to 20.09 ng/m³ during winter time. These components are common product of **incomplete combustion**, since aromatic rings formed mainly during incomplete combustion of fossil fuels, explaining higher winter time concentrations

Feb-Mar 2014 2014 April Ap

Figure 3. Monthly concentrations of main PAHs in Tehran

ACKNOWLEDGEMENTS

The authors would like to acknowledge the Air Quality Company manager and staff for providing the samplers and granting access to the Sharif air quality station and its data. We would also like to thank Mr. Najafi and Hassankhani for their important contributions to the field campaign. Arhami, M., Sillanpää, M., Hu, S., Olson, M.R., Schauer, J.J., Sioutas, C., 2009. Size-segregated inorganic and organic components of PM in the communities of the Los Angeles Harbor. Aerosol Science and Technology 43, 145-160.

Benzo(ghi)fluoranthene

Decesari, S., Facchini, M., Fuzzi, S., McFiggans, G., Coe, H., Bower, K., 2005. The water-soluble organic component of size-segregated aerosol, cloud water and wet depositions from Jeju Island during ACE-Asia. Atmospheric Environment 39, 211-222.

Lough, G.C., Schauer, J.J., Park, J.-S., Shafer, M.M., DeMinter, J.T., Weinstein, J.P., 2005. Emissions of metals associated with motor vehicle roadways. Environmental Science & Technology 39, 826-836. Schauer, J.J., Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R., 1996. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmospheric Environment 30, 3837-3855.

Schauer, J.J., Cass, G.R., 2000. Source apportionment of wintertime gas-phase and particle-phase air pollutants using organic compounds as tracers. Environmental science & technology 34, 1821-1832.

REFERENCES