Technische Universität Berlin FG Verbrennungskraftmaschinen

Diesel, Petrol or Electricity for Future Road Traffic

Zürich, June 2017

Conventional Diesel combustion

- In Diesel engines the majority of the combustion happens within the piston bowl
- Conventional light duty engines have the typical omega bowl within the piston
- Due to the relative small piston diameter there is depending on operation point – a strong share of combustion close to the wall

Conventional Diesel combustion

- Through the shape of the piston bowl air can be utilized in the centre as the combustion moves back there, even in part load operation
- The intense contact with the piston surface nevertheless leads to heavy heat losses that can be recognized via the lower temperatures in the back flowing combustion

Conventional Diesel combustion

 In part load heat losses cause the highest share of losses in Diesel engines.

Diesel combustion with a flat bowl

- The use of a flat bowl reduces wall heat losses
- The combustion system is less close to the wall

Diesel combustion with a flat bowl

- The reduced heat losses lead to improved fuel efficiency.
- Soot emissions are increased.

Diesel combustion with a flat bowl

- Due to the flat bowl there is a reduced back flow of the combustion to the centre
- The worse air utilization leads to a combustion that is more rich so that there is more soot
- Adjustments of the injection system can reduce spray penetration length

Hey Roland...

... this is not an engine conference

Car with combustion engine

Car with electric motor

Lets talk about "green" electric cars?

Lets talk about "green" electric cars?

Seite 2

Perspective year 2025

betiin

"There will be several systems complementing each other"

But what are the facts?

Diesel, Petrol or Electricity for Future Road Traffic | Prof. Dr.-Ing. Roland Baar | 22.06.2017 FG Verbrennungskraftmaschinen

18

Ŋ

Facts

Fossil fuels are ...

limited and

cause climate change

Battery electric cars are far away from mainstream because ...

Battery capacity is limited

Reload time still too long

Clean electric energy is needed

Storage of renewable energy is needed

Fuel cells are promising but ...

Hydrogen has low energy density

System technology is still not ready

Power-to-gas is an alternative but have two disadvantages because ...

Conversion relative is expensive

The system needs the evil combustion engine

"There will be several systems complementing each other"

The truth is ...

There is no technical solution

Industrial market introduction Social memory lead to typical thinking error

1st idea / market success

1956 / 1981 catalytic converter

1905 / 2000 particulate filter Long debate between public, politics, media, industry before market introduction, then suddenly full market penetration

1888 / open electric car What do we learn?

- 1. Invention
- 2. Full system integrity
- 3. Series production readyness

Innovation process Thinking shortcut leads to typical thinking

Is warp speed possible?

Compare: Communication vs. transport Data flow vs. energy flow

"Nothing is impossible"

Diesel, Petrol or Electricity for Future Road Traffic | Prof. Dr.-Ing. Roland Baar | 22.06.2017 FG Verbrennungskraftmaschinen per l

Technical potential in ICE powertrains Exhaust energy usage

Diesel, Petrol or Electricity for Future Road Traffic | Prof. Dr.-Ing. Roland Baar | 22.06.2017 FG Verbrennungskraftmaschinen

27

Technical potentials in combustion engines

Combustion improvement

- New combustion systems
- Water injection ...
- Natural gas / methane
- Fuels

Powertrain

- Components
- Topology
- Individualization
- Thermal management
- Aftertreatment

Electrification

- Components
- Hybridisation

- Improved and new components and functionality
- New models for integrated development of energy use in system
- Both, a realistic and a demanding view to facts

Technical potentials in combustion engines

Kontakt:

Prof. Dr.-Ing. Roland Baar

TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Verbrennungskraftmaschinen Carnotstr. 1A 10587 Berlin

 phone:
 +49 30 314 26946

 fax:
 +49 30 314 26105

 email:
 roland.baar@tu-berlin.de

 internet:
 www.vkm.tu-berlin.de

$\mathrm{Li}_{1-x}\mathrm{Mn}_2\mathrm{O}_4 + \mathrm{Li}_x\mathrm{C}_n ightarrow \mathrm{Li}\mathrm{Mn}_2\mathrm{O}_4 + \mathrm{C}_n$

$CH_4 + 2\,O_2 \rightarrow CO_2 + 2\,H_2O$

Idea what energy is and how much energy we need?

Diesel, Petrol or Electricity for Future Road Traffic | Prof. Dr.-Ing. Roland Baar | 22.06.2017 FG Verbrennungskraftmaschinen Perlin

Diesel, Petrol or Electricity for Future Road Traffic | Prof. Dr.-Ing. Roland Baar | 22.06.2017 FG Verbrennungskraftmaschinen

32