

UNIVERSITÉ DE FRIBOURG **UNIVERSITÄT FREIBURG**

An in vitro exposure method to assess adverse effects of ambient air using human lung cells

<u>Christoph Bisig¹</u>, Pierre Comte², Andreas Mayer³, Jan Czerwinski², Alke Petri-Fink¹, Barbara Rothen-Rutishauser¹

¹Adolphe Merkle Institute (AMI), University of Fribourg, Switzerland; ²Bern University for Applied Sciences (UASB), Switzerland; ³Technik Thermischer Maschinen (TTM), Switzerland

Introduction

Ambient air consists mainly of nitrogen and oxygen, additionally it is polluted by particulate matter (PM), nitrogen oxides (NO_x), and ozone (O₃). Epidemiological studies have associated these air pollutants with cardiovascular and pulmonary diseases (e.g. asthma) [1-3]. Complementing these studies with in vitro or in vivo models is important to gain a better understanding of the potential hazard at the cellular level and to eliminate confounders (*e.g.* smoking). Our aim was to evaluate the usability of a portable in vitro exposure system to detect adverse effects of ambient air (in summer and winter), where a multi-cellular human lung model was directly exposed at the air-liquid interface (proof of concept).

Fig. 1 Exposure system.

[A] The exposure box [a], wrapped in aluminium foil to protect the cells from light, is placed on a balcony (in summer) or inside the apartment (winter). The exposure box contains two chambers ([b], one for ambient air [c] and another for filtered medicinal air as

a control [d]). Conditions inside the exposure box were controlled by flowmeters [e] and monitored in real time [f]. [B] Scheme of the human lung model composed of three different human cell types. The cells are cultured at the air-liquid interface, ambient air (or filtered medicinal air) on the top, and cell culture medium (yellow) at the bottom. Cells were exposed for 12 hours [Figure adapted from 5].

Fig. 2 Ambient air characterisation. Shown are 12h averages on exposure days.

- Higher PN in winter ambient air than summer
- On two days PM₁₀ exceeded daily Swiss limit $(50 \,\mu g/cm^3)$
- Higher ozone levels in summer

	E .≥ 0 125				
	Le at Nor	Heme oxygenase 1 (HMOX1)	NAD(P)H quinone dehydrogenase 1 (NQO1)	Interleukin 1b (pro-IL1b)	Interleukin 8 (IL 8)
		Summer ambient air		Winter ambient air	
		 12 hour exposure 		12 hour exposure	
		3x 12 hour exp	osures	3x 12 hour exposures	
,	Fig. 3 Gene dative stres pro-inttflam malized to method), n= dicinal air, ty	Fig. 3 Gene expression analysis of four selected genes. Oxi- dative stress related genes (HMOX1 and NQO1) as well as pro-inttflammatory genes (pro-IL1b and IL8) are shown. Nor- malized to filtered air control and GAPDH (Air line=1, ddCt method), n=4-6. #: Statistically different from the filtered me- dicinal air, two-way ANOVA, p < 0.05		 Summer ambient air → No oxidative stress → No pro-inflammation Winter ambient air → Oxidative stress (3 days only) 	

Materials and Methods

Exposure setup

- 12 hours exposure to filtered medicinal air or ambient air per day (07.00-19.00).
- One (1 day) to three (3 days) exposure (12 h/day).
- Summer ambient air: three repetitions in Aug '16
- Winter ambient air: three repetitions in Dec '16 and Jan '17
- 3D human lung epithelial tissue model is composed of
 - Bronchial epithelial cells (16HBE14o-)
 - Macrophages (from human monocytes)
 - Dendritic cells (from human monocytes)
 - The cells are grown at the air liquid interface (air on top, medium on bottom).

Endpoints

Conclusion

- Proof of concept of direct exposure of ambient air confirmed
- Repeated exposure on sub-sequent days possible
- Pro-inflammatory response higher in

Gene expression analysis (qPCR).

• Confocal microscopy images. DAPI stained the nucleus and Phalloidin Rhodamine F-actin cytoskeleton. **Abbreviations**

IL8= interleukin 8; HMOX1= heme oxygenase 1; NOx= nitrogen oxides; NQO1= NAD(P)H quinone dehydrogenase 1; pro-IL1b= pro-form (inactive) of interleukin 1b

winter correlates with higher PN/PM₁₀

- Effects already noticeable after one exposure day and similar after three days, sensitive method
- Mobile exposure system can be implemented at other locations (work place, nanomaterial facilities)

[1] WHO. http://www.who.int/mediacentre/factsheets/fs313/en/. 2014; [2] Dockery, D.W., et al., N Engl J Med, 1993; [3] Pope, C.A., et al., Circulation, 2004; [4] Blank et al., Am J Respir Cell Mol Biol. 2007; [5] Bisig, C.J. et al., CHIMIA Intern J for Chem, 2015.

This work was funded by the VERT Association, Swiss Federal Office for the Environment, Swiss Federal Office for Energy, Adolphe Merkle Foundation, Schweizer Erdölvereinigung.

analysis

(Per-

DiSC-

A special thank you goes to Bernard Sturny of the state of Fribourg, who provided the ambient air analysis.

Christoph Bisig Adolphe Merkle Institute christoph.bisig@unifr.ch