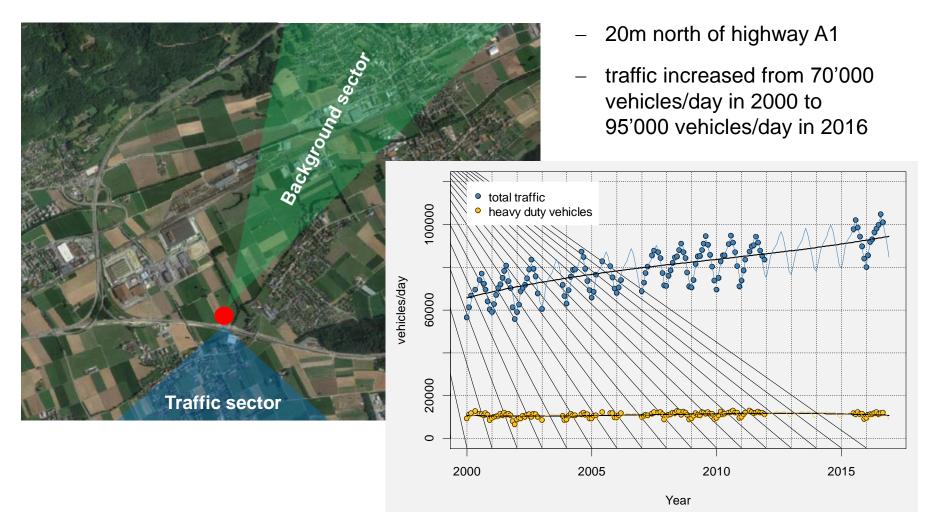


Foto: Jörg Sintermann, AWEL

Effects of traffic related abatement policies on Swiss air quality trends

Christoph Hueglin

Empa, Materials Science and Technology Laboratory for Air Pollution/Environmental Technology


Motivation - Measures implemented in Switzerland to reduce air pollution from traffic (and non-road engines)

- Implementation of the Euro emission standards (beginning 1995) for example, Euro 5 (since 2009) and Euro 6 emission standards require that diesel vehicles are equipped with diesel particulate filter (DPF)
- Stepwise reduction of sulfur content in fuels (< 10 mg/kg since 2010)
- Implementation of policies and programs to fit DPF to non-road diesel engines (construction machines, ship engines, cargo trains etc.) – for example, emission limits for particle number concentration (PNC) for construction machines since 2010
- Heavy vehicle charge (LSVA) for kilometers driven on Swiss roads depends on Euro emission standard
- Financial incentives for public transport companies for operating low-emission busses (since 2008, refund of mineral oil tax for busses equipped with DPF)

- ...

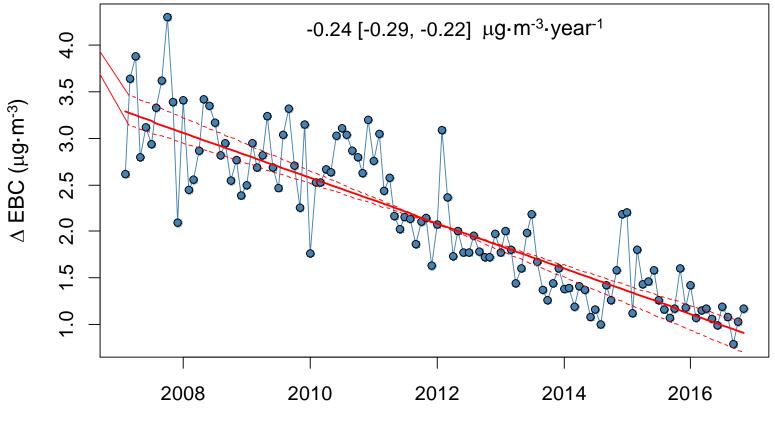
⇒ Impact on air quality?

⇒ data filtering (wind direction, wind speed, daytime)

⇒ calculation of *roadside increments*

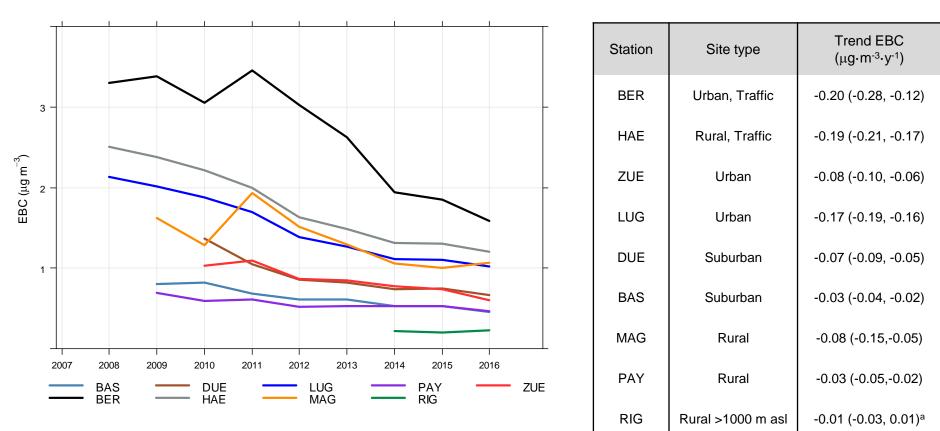
calculated trends of roadside increments for 2005 - 2016

Strong downward trends! \Rightarrow Success of abatement policies

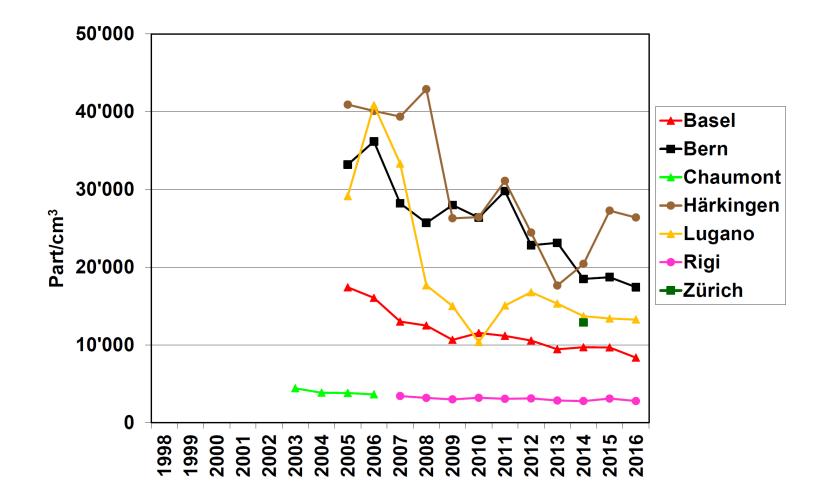

Pollutant	Unit	Trend
ΔNO_x	ppb⋅m ⁻³ ⋅year ⁻¹	-2.47 [-3.18, -1.72]
	% year ⁻¹	-2.9 [-3.7, -2.0]
ΔNO_2	ppb⋅m ⁻³ ⋅year ⁻¹	0.16 [-0.12, 0.38]
	% year-1	0.8 [-0.6, 1.9]
Δ CO	ppb⋅m ⁻³ ⋅year ⁻¹	-10.93 [-14.64, -7.64]
	% year-1	-7.3 [-9.8, -5.1]
$\Delta \operatorname{CO}_2^*$	ppm⋅m ⁻³ ⋅year ⁻¹	0.19 [-0.81, 0.97]
	% year-1	0.5 [-2.2, 2.6]
$\Delta \text{ PM}_{10}$	μg⋅m ⁻³ ⋅year ⁻¹	-0.19 [-0.35, 0.09]
	% year-1	-6.3 [-11.3, 3.0]
Δ PNC	number cm ⁻³ ·year ⁻¹	-3172 [-4913, -1903]
	% year ⁻¹	-7.3 [-11.3, -4.4]
$\Delta \text{ EBC}^{**}$	μg⋅m ⁻³ ⋅year ⁻¹	-0.24 [-0.29, -0.22]
	% year ⁻¹	-11.6 [-13.5, 10.4]

* Trend for 2008-2016

** Trend for 2007-2016


calculated trend of equivalent black carbon (EBC) roadside increment

Year

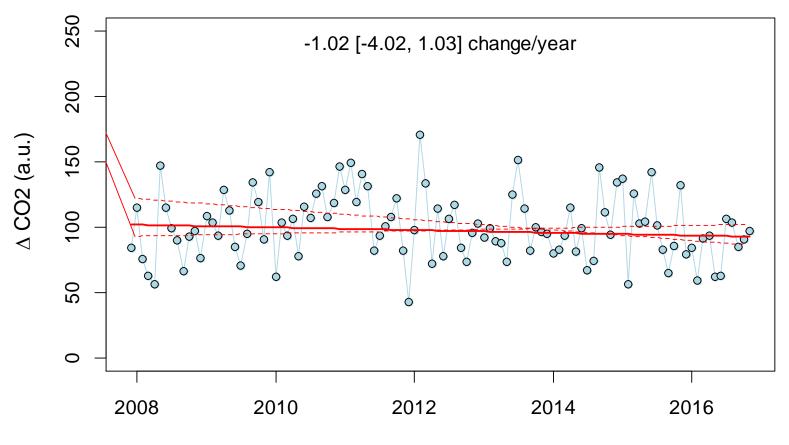

Trend of equivalent black carbon (EBC) in Switzerland

^a based on data from 3¹/₂ years

Trend of particle number concentration (PNC) in Switzerland

calculated trends of roadside increments for 2005 - 2016

Strong downward trends! \Rightarrow Success of abatement policies


Pollutant	Unit	Trend	
ΔNO_x	ppb⋅m ⁻³ ⋅year ⁻¹	-2.47 [-3.18, -1.72]	
	% year ⁻¹	-2.9 [-3.7, -2.0]	
ΔNO_2	ppb⋅m ⁻³ ⋅year ⁻¹	0.16 [-0.12, 0.38]	
	% year ⁻¹	0.8 [-0.6, 1.9]	
Δ CO	ppb⋅m ⁻³ ⋅year ⁻¹	-10.93 [-14.64, -7.64]	
	% year ⁻¹	-7.3 [-9.8, -5.1]	
$\Delta \operatorname{CO}_2^*$	ppm⋅m ⁻³ ⋅year ⁻¹	0.19 [-0.81, 0.97]	No significant trend
	% year ⁻¹	0.5 [-2.2, 2.6]	
ΔPM_{10}	μg⋅m ⁻³ ⋅year ⁻¹	-0.19 [-0.35, 0.09]	
	% year ⁻¹	-6.3 [-11.3, 3.0]	
Δ PNC	number cm ⁻³ ·year ⁻¹	-3172 [-4913, -1903]	
	% year ⁻¹	-7.3 [-11.3, -4.4]	
$\Delta \text{ EBC}^{**}$	µg⋅m ⁻³ ⋅year ⁻¹	-0.24 [-0.29, -0.22]	
	% year ⁻¹	-11.6 [-13.5, 10.4]	

* Trend for 2008-2016

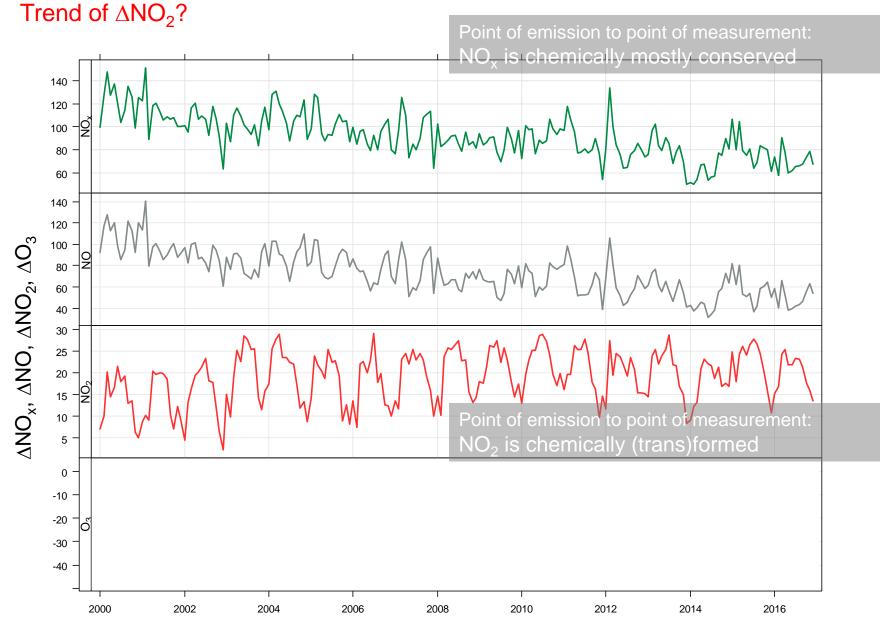
** Trend for 2007-2016

calculated trend of CO₂ roadside increment (normalized to traffic activity)

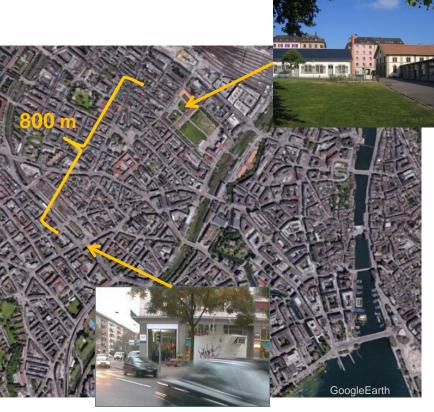
Year

calculated trends of roadside increments for 2005 - 2016

Strong downward trends! \Rightarrow Success of abatement policies


			Downward trend of NO _x
Pollutant	Unit	Trend	No significant trend of NO ₂ !
ΔNO_x	ppb⋅m ⁻³ ⋅year ⁻¹	-2.47 [-3.18, -1.72]	
	% year ⁻¹	-2.9 [-3.7, -2.0]	
ΔNO_2	ppb⋅m ⁻³ ⋅year ⁻¹	0.16 [-0.12, 0.38]	
	% year ⁻¹	0.8 [-0.6, 1.9]	
Δ CO	ppb⋅m ⁻³ ⋅year ⁻¹	-10.93 [-14.64, -7.64]	
	% year ⁻¹	-7.3 [-9.8, -5.1]	
$\Delta \operatorname{CO}_2^*$	ppm⋅m ⁻³ ⋅year ⁻¹	0.19 [-0.81, 0.97]	No significant trend
	% year ⁻¹	0.5 [-2.2, 2.6]	
ΔPM_{10}	µg⋅m ⁻³ ⋅year ⁻¹	-0.19 [-0.35, 0.09]	
	% year ⁻¹	-6.3 [-11.3, 3.0]	
Δ PNC	number cm ⁻³ ·year ⁻¹	-3172 [-4913, -1903]	
	% year ⁻¹	-7.3 [-11.3, -4.4]	
$\Delta \text{ EBC}^{**}$	µg⋅m ⁻³ ⋅year ⁻¹	-0.24 [-0.29, -0.22]	
	% year ⁻¹	-11.6 [-13.5, 10.4]	

* Trend for 2008-2016


** Trend for 2007-2016

Rural traffic site Haerkingen – time series of road side increments

Trend of ΔNO_2 (roadsite increment) in Zurich

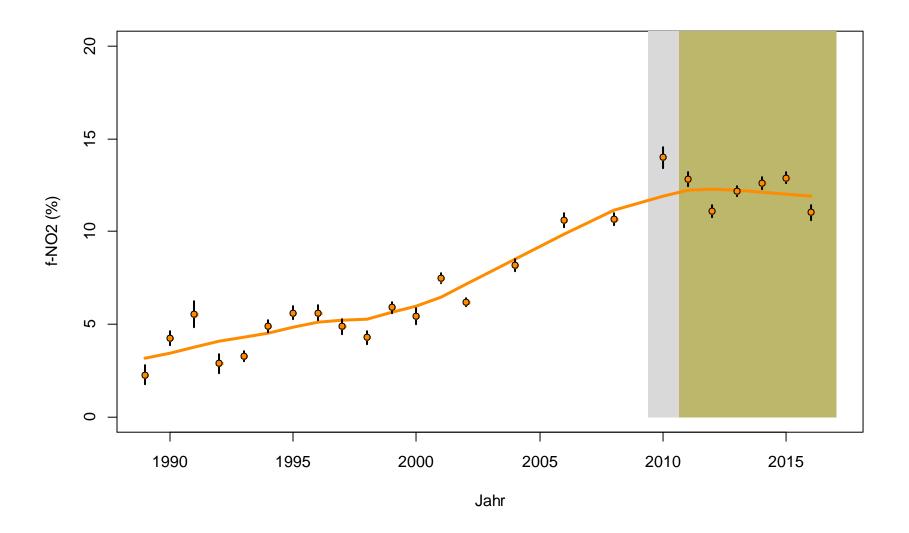
urban background (Zürich Zeughaushof)

$$NO_{2t} = NO_{2b} + \Delta NO_{2}$$

traffic site

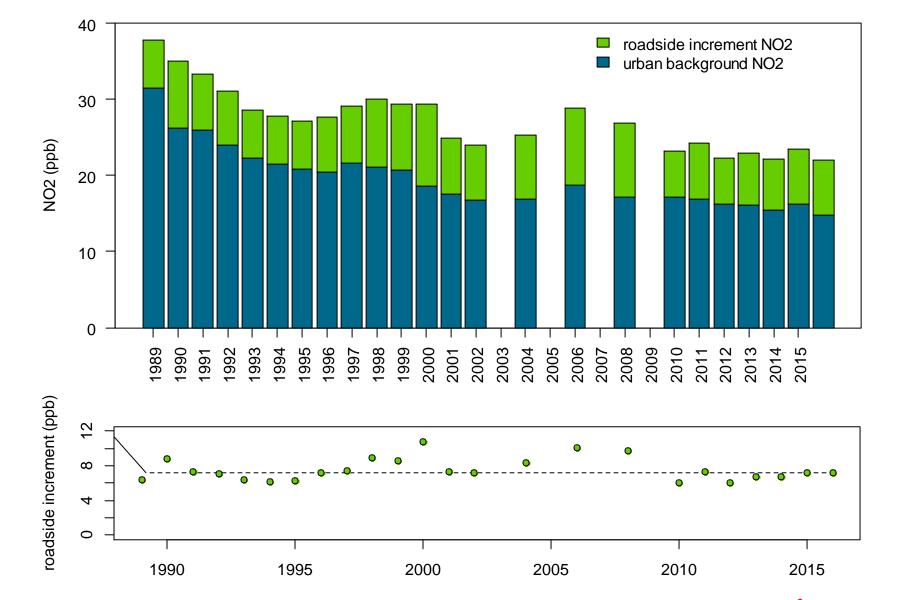
traffic site roadside increment (Zürich Schimmelstrasse)

 $\Delta NO_2 = \underbrace{(O_{3b} - O_{3t})}_{\bullet} + \underbrace{\alpha \cdot (NO_{xt} - NO_{xb})}_{\bullet} + \underbrace{\beta}_{\downarrow}$


locally formed secondary NO₂

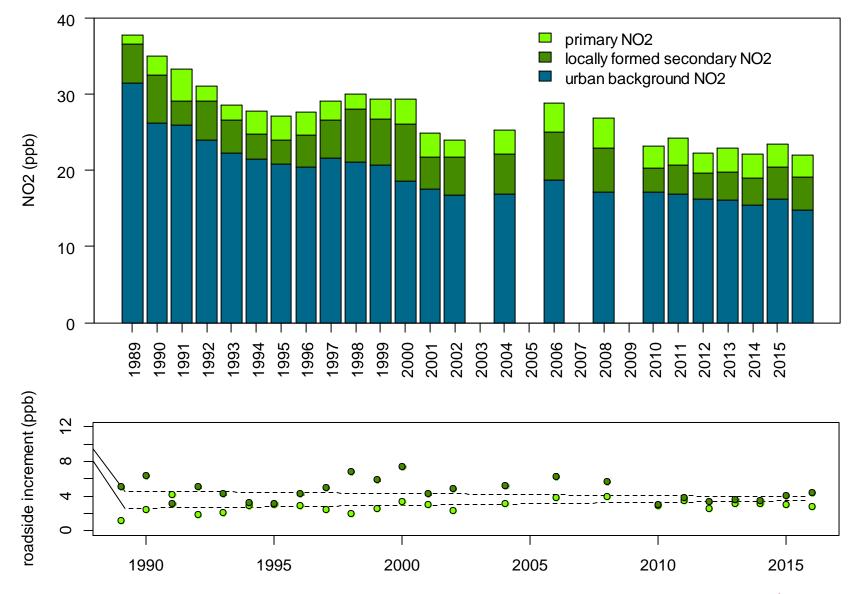
primary NO₂ from residual local traffic

 α : NO₂/NO_x emission ratio



Trend of NO₂/NO_x emission ratio in Zurich

see also Carslaw et al. Faraday. Disc. (2016) for trend in London (UK)



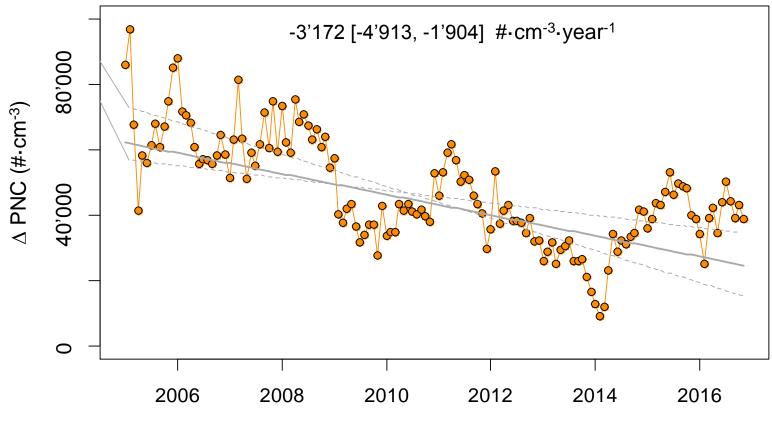
Trend of background NO₂ and roadsite increment (Δ NO₂) at ZH-Schimmelstrasse

Trend of background NO₂, local secondary & primary NO₂ at ZH-Schimmelstrasse

Conclusions

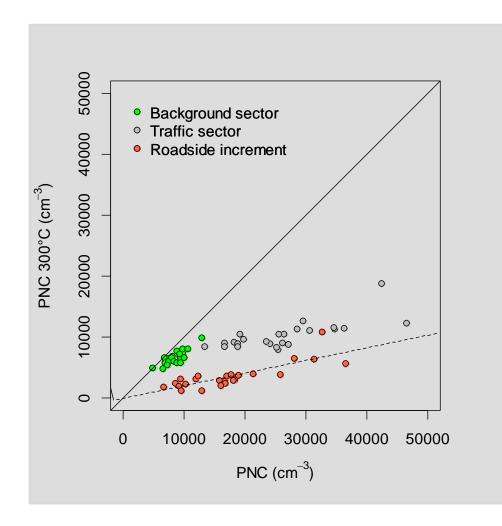
- Policies for the abatement of air pollution from traffic as implemented in Switzerland have been successful
 - Remarkable downward trend of black carbon (due to DPF)
 - Clear downward trends of other air pollutants (e.g. PNC and NO_x)
- However, NO₂ roadside increment shows no improvement. Three reasons:
 - 1. Real world NO_x emissions of diesel vehicles are larger than the EURO emission limits
 - 2. NO_2/NO_x emission ratio from diesel vehicles was increasing until recently
 - 3. Locally formed secondary NO₂ (reaction of NO with O₃) remained constant although NO has been declining
 - $\Rightarrow~$ For reducing NO_2 roadside increment, further reduction of NO_x emissions needed
- Average traffic fleet on Swiss highway (A1, Haerkingen site) shows no change in CO₂-emissions per vehicle for 2008-2016 period
- Similar work for London (UK) by Font and Fuller Environ. Pollution (2016)

Foto: Jörg Sintermann, AWEL


Thank you!

Many thanks to

- NABEL team at Empa and FOEN
- Umwelt- und Gesundheitsschutz Zürich (UGZ) for data from Zurich Schimmelstrasse


trend of roadside increment of the number concentration of particles > 5 nm (PNC)

Year

Number concentration of refractory particles (up to 300°C) vs. total particles

