

Genotoxic and inflammatory responses of human bronchial epithelial cells to diesel and biodiesel exhaust.

Ian WH Jarvis

Research Associate, King's College London

- There is an increasing application of renewable fuel sources (such as biodiesels) into the global fuel chain.
 - Current EU mandate for member states to use 10 % renewable energy in transport will however be scrapped after 2020.
- > The increase is being driven by a number of environmental and health factors focus to reduce the levels of toxic emissions (i.e. CO_2 , NO_x , PAHs).
- Alongside this there is a growing interest in studying the adverse health effects of human exposure to contemporary diesel exhausts.

- In a human exposure chamber study (Unosson et al., 2017, EHP in press) subjects were exposed to contemporary low-sulphur diesel (LSDE), RME100 and a blend of the two (RME30).
 - > 70/30 LSDE/RME chosen as considered most likely blend for future.
- Composition: RME exhausts contained an increased number of smaller diameter particles (mean Ø 30-80 nm), lower EC and fewer PAHs.
- Results overview: RME30 and RME100 caused similar cardiovascular and respiratory symptoms in humans compared to LSDE.

NHS National Institute for Health Research

Model

Development

- My primary research involves development of improved *in vitro* lung cell models for toxicological testing.
- Primary human lungs cells are cultured on Corning Transwell inserts.
- Aim is to build up multiple cell types to increase complexity and ideally be more representative of the human airways.

- Research question: What are the *in vitro* effects of exposure of primary human lung cells to the contemporary LSDE and RME30 exhaust samples?
- In March 2017 I received LSDE and RME30 exhaust that had been collected by direct impinging into water (2.47 and 1.89 mg/ml, resp.).
- Today I will present some of our preliminary investigations in submerged primary human lung cells exposed to LSDE and RME30 exhaust.

Cellular assays

- Primary human airway epithelial cells (hAEC) were obtained from bronchial biopsies of healthy non-smokers (Epithelix Sàrl, Geneva).
- > Cells were exposed to $1.25 20 \mu g/ml$ exhaust (diluted in medium).
 - ➢ Range chosen from blood cell exposures (Ian Mudway group, KCL).
 - > Exposure to SRM 2975 also to compare with older diesel exhaust.
- Endpoints studied:
 - Comet assay for DNA damage at 24/48 hrs.
 - > Real-time PCR for mRNA levels of CSF2, IL8 and TNF at 1 48 hrs.
 - > Western blot for phosphorylation of JNK, p38 and NFκB at 6 hrs.

Cytotoxicity

NHS National Institute for Health Research

125₇ 24 hrs 48 hrs 100 Cell Viability (% of control) 75-50-25-0 SRM т LSDE RME30

Cytotoxicity, 20 µg/ml exhaust

DNA damage (comet)

DNA damage, 20 µg/ml exhaust

Real Time PCR for CSF2

> Encodes GM-CSF cytokine, involved in recruitment of immune cells.

CSF2 mRNA, 20 µg/ml exhaust

Real Time PCR for IL-8

> Encodes IL-8 cytokine, involved in acute phase inflammatory response.

IL-8 mRNA, 20 µg/ml exhaust

Real Time PCR for TNF

 \succ Encodes TNF α cytokine, involved in acute phase inflammatory response.

TNF mRNA, 20 µg/ml exhaust

WB for stress signalling

Three proteins involved in a number of different responses to stimuli that cause cell stress including DNA transcription and cytokine production.

Western blot, 20 µg/ml exhaust

Summary

- Under the conditions tested, there was no difference in the *in vitro* response to RME30 compared to LSDE.
- Contemporary exhausts RME30 and LSDE elicited different cellular responses to the older diesel exhaust SRM 2975.
- Lack of an observed effect *in vitro* does not correlate with respiratory effects seen in human chamber exposures.
- Work is ongoing to understand effects of exposure to higher exhaust concentrations and repeat-dose exposures.

Acknowledgements

- King's College London, UK
 - David Phillips
 - Volker Arlt
 - Ian Mudway
- > Umeå University, Sweden
 - Thomas Sandström and research group

