NEW PTI PROCEDURES ARE NEEDED TO GUARANTEE EMISSION STABILITY

Gerrit Kadijk

21st ETH-Conference. June 22nd, 2017. Zürich, Switzerland.

Ministerie van Infrastructuur en Milieu

DPF-PTI RESEARCH PROGRAM RESULTS 2015-2017

innovation for life

OBJECTIVES DUTCH PTI DPF PROGRAM

- Development of a PTI test protocol (Periodic Technical Inspection) to judge the performance of Diesel Particulate Filters.
- > What has been changed since the implementation of DPF's?
- Euro 1,2,3,4: determination of the <u>quality of the combustion</u>; smoke numbers are suitable ($k = 0,3 2,5 \text{ m}^{-1}$ on a measuring scale of $0 10 \text{ m}^{-1}$).
- Euro 5,6: Determination of the <u>filtration efficiency of the DPF</u>; smoke numbers are extremely low (k = 0,00 0,05 m⁻¹).

EMISSION LIMIT VALUES

	Type approval, chassis dynamometer NEDC test 11 km		Type Approval & PTI
			Free acceleration test
Emission class	PM limit value	PN limit value	Smoke (Opacity)
	[mg/km]	[#/km]	k [m ⁻¹]
Euro 1 – 1993	140	-	3.0
Euro 2 – 1996	80	-	
Euro 3 – 2000	50	-	2.5
Euro 4 – 2005	25	-	
Euro 5a – 2009	5	-	
Euro 5b – 2011	4.5	6 * 10 ¹¹	1.5
Euro 6 – 2015	4.5	6 * 10 ¹¹	
2018			0.7

2015-2016: PTI VEHICLE SELECTION

- Lease companies, service shops
- > 220 vehicles were selected at random at the 7 test locations.
- > Age 2 5 years old @ 50,000 250,000 km
- > Selection is not representative for the Dutch fleet.
- > Test period: December 2015 February 2016.

PN tester CPC Solid + volatile > 10 nm

Research of a new PTI DPF PN emission test

ETH Zürich, June 22nd, 2017.

TEST RESULTS: FIRST IMPRESSION SWIPE TESTS

21% of the tested vehicles have a (deep) black tail pipe. Swipe test results are a first impression but cannot be applied for PTI test purposes!

PN EMISSIONS @ LOW IDLE SPEED

161 vehicles (76%) have a PN emission of < 5000 #/cm³.
52 vehicles (24%) have an elevated PN emission of > 5000 #/cm³.
10% of the vehicles have a PN emission of > 250.000 #/cm³.

NEXT GOAL

- Proposal of a development project for a new PTI DPF emission test procedure
 - 1. Definition of a relevant emission test
 - 2. Definition of a feasible PN limit value
 - 3. Definition and specification of a low cost PN-tester

The PTI PN emission test, PN limit value and the new PN-tester are related and must be approached as a package.

2 OPACIMETERS & 4 PN TESTERS

 $K = 0 - 10 m^{-1}$.

> 23 nm solid DF 100 Max. 5^E07 Research of a new PTI DPF PN emission test > 23 nm solid 10 5^E06 > 20 nm solid+volatile 1 5^E05 > 10 nm solid+volatile 1 1^E05 ETH Zürich, June 22nd, 2017.

EXAMPLE PN EMISSIONS PRE & POST DPF

FORD FIESTA EURO 6: ENGINE START & WARMING UP @ 800 RPM

DPF has a small failure 1 hour @ low idle speed.
At low idle speed the PN emission of the hot engine is pre DPF 3,600,000 #/cm ³ post DPF 300,000 #/cm³ .
2014/45/EC PTI smoke: k = 0.11 m ⁻¹ .
UNECE R83 Type I test Chassis dyno NEDC*: PM = 1.5 mg/km (CF = 0.3) $PN = 3.9 * 10^{12} \text{ #/km} (CF = 6.5)$

A potential PTI test must be executed with a hot engine.

* Limit values PM=4.5 mg/km, PN 6 * 10¹¹ #/km.

IDLE SPEED TEST WITH 4 PN-COUNTERS

PEUGEOT 308 EURO 6 @ 104,755 KM

PEUGEOT PARTNER WITH DPF BYPASS

Research of a new PTI DPF PN emission test

ETH Zürich, June 22nd, 2017.

TNO innovation for life

PN & SMOKE EMISSIONS IN FA TESTS

SIMULATED DPF FAILURES VIA DIFFERENT BYPASS FLOWS

PN emission @ low idle speed is set with adjustable DPF bypass flow. Estimated maximum DPF leakage is 25%.

PN emissions in free acceleration test are probably too high for low cost PTI PN testers and smoke emissions are too low.

PN & PM IN NEDC VERSUS PN @ LOW IDLE

● PN ◆ PM

PN @ low idle speed {t>60s} [#/cm³]

PN @ low idle speed has a good correlation with PN in the NEDC

SPECIFICATION OF NEW PTI PN TESTER

- Psize: >50% @ 70 nm.
- > Dilution ratio: 10.
- Measuring range: 0 5.000.000 #/cm³.
- No catalytic stripper
- Heated PN device @ 120 140 °C.

In order to have a PTI PN counter with an acceptable price (< 5000 Euro) a simplified specification of the PN tester is needed .

PROPOSAL NEW PTI TEST PROCEDURE

New specification PTI PN-tester

Proposed PN limit value 250,000 #/cm³

Current UNECE R83 Type II test for petrol vehicles is very similar and this test can be added to R83.

NPTI TEST PROCEDURE

- > Hot running engine (> 60 s.) at low idle speed.
- > Start PN sampling of ambient air and exhaust gas at low idle speed.
- > If PN is less < 2,500 #/cm³ @ t = 15 s \rightarrow test passed (80% of vehicles).
- > Euro 5b/6: If average PN < 250,000 #/cm³ \rightarrow PTI pass.
- > Euro 5a: If average PN < 1,500,000 #/cm³ \rightarrow PTI pass.

NPTI TEST PROCEDURE

CONTACT DETAILS

- TNO Sustainable Transport & Logistics
- Gerrit Kadijk
- Researcher/Consultant
- > <u>Gerrit.kadijk@tno.nl</u>
- M: + 31 (0)6 122 780 56
- > <u>www.tno.nl/vehicle-emissions</u> or <u>www.tno.nl/voertuigemissies</u>
- https://www.tno.nl/en/focus-area/urbanisation/mobility-logistics/cleanmobility/emissions-of-particulate-matter-from-diesel-cars/

THANK YOU VERY MUCH FOR YOUR ATTENTION

MEN

25

GERRIT KADIJK GERRIT.KADIJK@TNO.NL

> innovation for life