HIGH EMISSION RISKS DESPITE HIGHLY EFFICIENT EMISSION CONTROL

novation

21st ETH-Conference. June 20th, 2017. Zürich, Switzerland.

Gerrit Kadijk

TODAY

- 1. Introduction.
- 2. Risks & stakeholders.
- 3. Risk investigation, facts and figures.
- 4. Vehicle technologies & emissions.
- 5. Two contributions for reduction of *risks*.

Mission: Our noble task is to reduce (vehicle) emissions which may contribute to a better air quality and a less negative health impact.

MISSION OF TNO

TNO connects people and knowledge to create innovations that boost the sustainable competitive strength of industry and well-being of society.

'INNOVATION FOR LIFE'

TNO is an <u>independent</u> Dutch multidisciplinary research organization for applied research (no shareholders), defined in the Dutch TNO law.

3000 employees.

INTERNATIONAL LOCATIONS / AGENTS

REAL WORLD EMISSION RESEARCH

1968 - 2017

L'histoire se répète.

OBVIOUS RELATIONSHIP OF SAFETY RISK & HEALTH

Risk is the potential of losing something of **value**.

This risk is accepted by many stakeholders because the direct health effects are very obvious.

We are willing to pay and to act in order to have more private safety in *traffic*.

URBAN POPULATIONS & PROSPERITY & DRAWBACK

Contributors to grow of urban populations:

- Industrialisation
- Infrastructure
- Mobility

Last 50 years urban populations tripled. Air pollution is an assassin because it is related to *economic activities*.

AIR QUALITY OF URBAN AREAS ON A WIDER SCALE

Sources of air pollution:

- Industrial activities
- Traffic
- Households
- Agriculture

Value: Our health & quality of life

EC 2008/50/EG	Annual basis	Daily basis	Maximum daily 8 hour mean	Permitted exceedances per year
	[µg/m³]	[µg/m³]	[mg/m ³]	[day]
NO ₂	40	200	-	18
PM10	40	50	-	35
PM2.5	25	-	-	-
СО	-	-	10	-

Economic prosperity starts innocent but the sting is in the tail. *Traffic* is one of the contributors.

PM10 2003 AND 2013

2003

2013

Although the total vehicle mileage between 2003 and 2013 slightly increased, air quality in many regions <u>improved</u> substantially. Certain areas and cities still have a way to go.

http://www.eea.europa.eu/themes/air/interactive/pm10

TNO innovation for life

PM10 EMISSIONS OF DUTCH ROAD TRAFFIC

18 16 14 PM10 [kton/year] 12 10 Passenger car fleet: 8 15% diesel 6 85% gasoline 4 2 0 1985 1990 1995 2010 2000 2005 2015 2020

Applied fuel injection technologies cause a decrease of PM10 emissions. Diesel Particulate Filters will contribute to a further decrease. _{Source: CBS} What is the emission performance of <u>older vehicles</u> which are exported? DPF REMOVAL and/or manipulation is a risk because engine technologies deteriorate.

→Road traffic →Passenger cars →LCVs → Trucks & buses

NOX EMISSIONS OF DUTCH ROAD TRAFFIC

NOx: HD and LD-gasoline decrease, <u>LD-diesel and LCVs increase</u>. Applied *technologies & controls* have a major impact on emissions. Source: CBS DIESELGATE EGR and/or SCR manipulation!

INVESTIGATION OF EMISSION RISKS

> Assumption:

Real world emission *risks* are related to societal systems & stakeholders.

Impact = Risk * Probability

WHO IS RESPONSIBLE FOR EMISSIONS?

	Stakeholder	Issue or risk
1	European government	Quality of legislation, CO ₂ fleet tax system
2	National government	Tax system, air quality policies
3	Type approval authority	Quality of type approval, span of control
4	Manufacturer	Quality of vehicle (on the road!)
5	Press	Dissemination and quality of information
6	Non governmental organisation	Knowledge & opinions & pressure
7	Scientist	Reliability of research & watchdog
8	Dealer - Service shop	Quality of buy & maintenance & repair
9	Fuel supplier	Fuel quality
10	Traffic controller	Vehicle speed & stop time & traffic jams
11	Vehicle owner	Governance vehicle
12	Driver	Driving behaviour
13	Citizen	Health

16 | High emission risks despite highly efficient emission control

FROM VEHICLE EMISSIONS TO HEALTH IS COMPLEX

- 1. Fuel quality.
- 2. Vehicle type & technology.
- 3. Number of vehicles and mileages.
- 4. Location & Ambient conditions.
- 5. Propagation of the exhaust gas in ambient air.
- 6. Exposure to diluted exhaust gas (concentration @ frequency).
- 7. Breath of diluted exhaust gas.
- 8. Susceptibility to get sick.

The most effective way to protect people against air pollution is a reduction of the emissions of sources. Vehicle emissions must be as low as possible.

PM10 EMISSIONS OF LIGHT DUTY VEHICLES

The condition of modern engines and Diesel Particulate Filters is a key issue. Suitable tests for the Periodic Technical Inspection (PTI) are needed. Manipulation must be avoided.

NOX EMISSIONS OF LCVS ARE STILL AN ISSUE

NO_x real-world emissions of LCVs in urban traffic

Emission legislation of last 25 years has no effect on real world Nox emissions in urban traffic. <u>Real Driving Emission legislation</u> is needed for an improvement.

ON-ROAD NOX EMISSIONS OF VEHICLES

Truck RDE legislation of results in more than 85% NOx reduction. NOx emissions of diesel passenger cars and Euro VI trucks are similar.

RISKS OF TECHNOLOGIES IN DAILY OPERATION

Emission Control System		Gasoline Diesel		esel
		Passenger cars + LCV		Trucks
	Pollutant	Euro Class		
Exhaust Gas Recirculation (EGR, hot)	NOx	2 – 6	4	Ш
Exhaust Gas Recirculation (EGR, cooled)	NOx	- 5-6		IV – VI
Oxidation Catalyst (OC)	CO + HC	1 – 4	3 – 6	IV – VI
Three-way Catalyst (TWC)	CO + HC + NOx	1 – 6	-	-
Particulate Filter (DPF or GPF)	PM + PN	6?	5 – 6	VI
Selective Catalytic Reduction (SCR)	NOx	-	6	IV - VI
Lean NOx Trap (LNT)	NOx	-	6	-

High conversion rates (90 – 99.9 %) & high emission risks.

RISKS OF TECHNOLOGIES IN DAILY OPERATION

Emission Control System		Gasoline Diesel			
		Passenger cars + LCV Trucks			
	Pollutant	Euro Class			
Exhaust Gas Recirculation (EGR, hot)	NOx	2 – 6 4 III		Ш	
Exhaust Gas Recirculation (EGR, cooled)	NOx	- Elimination		IV – VI	
Oxidation Catalyst (OC)	CO + HC	1 – 4	3 – 6	IV – VI	
Three-way Catalyst (TWC)	CO + HC + NOx	1 – 6			
Particulate Filter (GPF or DPF)	PM + PN	6?	Removal		
Selective Catalytic Reduction (SCR)	NOx	-	- Elimination		
Lean NOx Trap (LNT)	NOx	-	- Elimination -		

Elimination, removal of parts and a lack of maintenance are the most prominent risks.

OVERVIEW CURRENT MAIN RISKS

- > No *awareness* of the impact of air pollution on human health.
- > **Other values** of stakeholders: Economy, mobility, status.
- > <u>Type approval:</u> No adequate procedure which covers real world emissions.
- > *Enforcement:* No adequate In Service Conformity Programs.
- > **Quality and representativeness of results:** No independent testing bodies.
- > **Transparancy:** Not sufficient emission data to inform stakeholders.
- > **Periodic Technical Inspection:** No adequate test procedures.

TWO NEXT STEPS

1. New test procedures for the Periodic Technical Inspection.

2. Reliable & representative on-road emission data.

WHITE PAPER OF A NEW PERIODIC TECHNICAL INSPECTION (NPTI) FOR DPFS IS AVAILABLE.

📾 5. Den Haag-Amsterdam sp 📾 9. RDE-H1 v1.pdf 🛛 🔂 Whit	e paper NPTI final • × +			- o ×	
\leftarrow \rightarrow \circlearrowright file;///C;/Users/kadijkg/AppData/Local/Microsoft/V	Vindows/INetCache/Content.Outlook/WZ1EARN0/White	%20paper%20NPTI%20final%20version.pdf			
	NPTI White Paper.	Zürich, ETH Conference	June 20 st , 2017.		
	White paper				
	NPTI – the New Pe	riodic Technical Inspection emi	ssion test		
	procedure for vehicles with emission control systems.				
	This white paper addresses Inspections (PTI). These nev performance of modern lig catalytic emission control. / Governments are requeste	the need for new emission test procedures in <i>w</i> test procedures are needed to secure the lo ht and heavy-duty road vehicles with particle A simple Particulate Number (PN) PTI test at l d to develop the final PTI test procedures.	۱ Periodic Technical Ing term emission filters (DPF or GPF) and ow idle speed is proposed.		
	Diesel engines without a pa lung penetrating size range in this size range are respor 35% by strokes and the rest a major role because they ł	rticulate filter emit toxic substances from wh of 10-500 nm are by far the most dangerous : nsible for 450'000 premature death in Europe, t by cancer [10]. In order to reduce this partic nave a very high efficiency.	ich solid particles in the substance. Solid particles , 45 % by heart attacks, :ulate emission DPFs play		
	Euro 5+6/VI diesel vehicles for all road vehicles. Diesel In the EU more than 100 mi	have for the first time implemented Best Ava Particle Filters (DPF) eliminate this particle er illion of these vehicles with such powerful filt	ilable Technology (BAT) nission more than 99%. ers have been sold. So the	م ال ا من الدين الفرير من الم	

SEMS modularity

innovation for life **SMART EMISSION MEASUREMENT SYSTEM**

Fue [Litt +- 1	el consumption m re/sec] 1%	neter	Analogue inputs Max 16 inputs -60 – 60 Volt e.g. MAP, MAF	Additional NO2 O2 or NH3 automotive set	x and nsors	Driver feedback device Within future plans
	SD-card memory Up to 160.000 hor	Main uni 12V / 24V power su	it Vapply			 Post-processing Calculated values like: NO_x / CO₂ in [g/kg] fuel consumption NO_x, NH₃ and CO₂ [g/km] For HD [g/kWh]
GPR Remo and c readi	S Modem G ote setting 5 data s ng p	BPS Hz peed, altitude and osition	 3x CAN bus interfaces OBDII or WWH-OBD J1939 Additional CAN 	NO _x / O₂/ Lambda automotive sensor [ppm] and [v%]	NH3 automotive sensor [ppm]	e K-type thermo couples 2 pieces standard Expandable to 18 pieces -40 – 375 degC +- 1.5

VEHICLE + SEMS + DRIVER

RDE trip of 73 km. Duration: 1 hr and 45 min. SEMS stores 1 Hz data.

Result: CO₂, NOx, NH₃ [g/km]

SEMS & AUTOMATED DATA PROCESSING OF ON ROAD TEST TRIPS

CONTACT DETAILS

- TNO Sustainable Transport & Logistics
- Gerrit Kadijk
- Researcher/Consultant
- > <u>Gerrit.kadijk@tno.nl</u>
- M: + 31 (0)6 122 780 56
- > <u>www.tno.nl/vehicle-emissions</u> or <u>www.tno.nl/voertuigemissies</u>
- https://www.tno.nl/en/focus-area/urbanisation/mobility-logistics/cleanmobility/emissions-of-particulate-matter-from-diesel-cars/