

Nascent and Mature Soot Morphology Dynamics

G.A. Kelesidis, J. Zürcher and S.E. Pratsinis Particle Technology Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland gkelesidis@ptl.mavt.ethz.ch

Motivation

Soot impact on health and environment strongly depends on its mobility size, d_m , and effective density, ho_{eff} .¹ Current scaling laws for d_m and ho_{eff} based on clusters of primary particles in point contact (agglomerates) neglect their chemical bonding (aggregation) and polydispersity, deviating significantly from measurements.¹ Here, new relationships are derived by investigating soot aggregate dynamics with a Discrete Element Model (DEM) for agglomeration & surface growth.²

tion of ρ_{eff} . 5. The DEM-derived relationships for d_m and ρ_{eff} can be used to characterize soot aggregates formed by agglomeration and surface growth in the absence of oxidation and volatile condensation.