

Soot oxidation on manganese oxide catalysts in gasoline exhaust gas

Christian Singer, Maria Nitzer-Noski, Sven Kureti

TU Bergakademie Freiberg · Institute of Energy Process Engineering and Chemical Engineering · Chair of Reaction Engineering Reiche Zeche · Fuchsmuehlenweg 9 · 09599 Freiberg · Phone: +49 3731 394551 · Fax: +49 3731 394555 · www.iec.tu-freiberg.de

Development of particulate emission limits of EU for gasoline cars

Strategies of particulate filter regeneration

- Passive regeneration (T=200...450°C) $2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$ $2 \text{ NO}_2 + \text{``C"} \rightarrow \text{CO}_2 + 2 \text{ NO}$
- Fuel Borne Catalyst: metal-organic compounds "C" + $O_2 \rightarrow CO_2$ T > 300°C $\overline{50}$
- Active regeneration (fuel post-injection)
 "C" + O₂ → CO₂ T > 600°C

• Catalytic GPF (CGPF): CeO_2 and Fe_2O_2 based catalysts "C" + $O_2 \rightarrow CO_2$ T > 500°C Evaluation of MnO_x catalysts

Temperature Programmed Oxidation (TPO)

Plug flow reactor with packed bed

TPO conditions

- y(O₂)=1%, y(H₂O)=2%, y(N₂)=97%
- F=500 ml/min (STP)
- tight contact, loose contact
- m=0.9 g (n_{cat}/n_{soot}=2)
- Model soot Printex U

Laboratory test bench

5

n(NH₃) / µmol/g

Effect of contact: tight vs. loose

 \rightarrow FSP-Mn₂O₃ requires contact to soot particles

Tight and loose contact mode

Tight contact

Loose contact

Effect of O₂ on activity of FSP-Mn₂O₃

Temperature evolution in catalyst bed

9

Isotopic TPO with ¹⁸O₂

- \rightarrow transfer of ca. 17% of catalyst oxygen
- \rightarrow importance of bulk oxygen

Thermal stability of FSP-Mn₂O₃

Activity after exposure for 4 h at 1050°C (static air)

Activity after SO₂ exposure for 16 h at 250°C (20 ppm SO₂, 5% O₂, 8% H₂O, N₂ balance)

Oxidation of ethanol-based soot on FSP-Mn₂O₃

- Soot obtained from combustion of iso-octane/ethanol (Prof. Trimis, KIT)
- Soot characteristics and catalytic oxidation

Soot	d / nm	S(BET) / m²/g
PrintexU	25	91
E0	12	425
E65	10	211
E100	6	96

→ very similar oxidation kinetics of different soot samples

Test of catalytic particulate filters

Catalytic coating of lab-GPF

FSP bench

Lab-GPF 300 cpsi 60% porosity

Soot deposition on catalytic GPF

TPO conditions

- Catalyst loading: 22 g/L
- Soot loading: ca. 1.5 g/L
- y(O₂)=1%, y(H₂O)=2%, N₂ balance
- F=6500 mL/min (S.V.≈20'000/h)

Activity of GPF coated with FSP catalyst

- → Effect of catalytic coating
- \rightarrow Presence of loose and tight contact mode

Implementation into Three Way Catalysts

- Manganese oxides are effective in soot oxidation and show high resistance towards thermal and SO_x exposure
- Manganese oxide catalyst requires intimate contact to soot
- FSP-Mn₂O₃ strongly supplies bulk oxygen to soot
- Beneficial effect of FSP catalyst also occurs onto particulate filters

Financial support from German Agency of Renewable Resources (project BiOtto) is thankfully acknowledged

Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz

FACHAGENTUR NACHWACHSENDE ROHSTOFFE e.V.

Preparation and characterisation of the soot

C₃H₆/O₂ diffusion flame

- Adsorbed species: 2.5 wt.%
- Chemical composition 98.8 wt.% C
 - 0.7 wt.% O
 - 0.5 wt.% H
 - <0.1 wt.% N
- $S_{BET} = 65 \text{ m}^2/\text{g}$
- d = 45 nm (most frequent diameter)

Thermal stability of FSP-Mn₃O₄ catalyst

Performance of lab-DPF coated with FSP-Mn₃O₄ under diesel conditions

Performance of lab-DPF coated with FSP-Mn₃O₄ under diesel and lean gasoline conditions

