

Can Black Carbon be defined by the absorption properties of laser-heated combustion generated nanoparticles ?

F. Migliorini, S. De Iuliis, R. Dondè, G. Zizak francesca.migliorini@cnr.it

Introduction

Laser-induced incandescence (LII) is widely used for black carbon (BC) measurements

Effects of laser heating on carbonaceous nanoparticles:

- * Changes in the particles internal structure
- * Formation of new particles
- * Permanent or reversible change in the optical properties

* ...

Affect laser-induced incandescence (LII) measurements and should be accounted for in the interpretation of the data

<u>Objective:</u>

Explore the spectral behavior of **carbonaceous nanoparticles absorption properties** after laser irradiation at different laser density energies

Laser-Induced Incandescence (LII)

III involves heating particles with a high-power **pulsed laser** of several nanosecond and then measure of the incandescence emission signal

- * Species selective \rightarrow only CARBON
- * High temporal and spatial resolution \rightarrow on-line measurements
- * High sensitivity and wide dynamic range \rightarrow ng/m³ g/m³

LII signal strongly depends on the optical properties of the carbonaceous particles under investigation

$$T_s = T_g + \frac{6\pi E(m)R_0}{\lambda_{exc}\rho_{soot} c_{soot}}$$

Tg: gas temperature **E(m)**: refractive index absorption function **Ro**: laser density energy (laser fluence) λexc: excitation wavelength psoot: soot density csoot: soot specific heat capacity

LF: low fluence, MF: medium fluence, HF: high fluence

Methodology

1. Generate a cold soot aerosol

- * Home-made soot generator
- * Ethylene diffusion flame quenched by nitrogen flow

2. Laser-heating of soot particles

- * Nd-YAG laser : 1064 nm excitation wavelength
- * Beam diameter = 5 mm, Top-hat profile
- * Different laser fluences

- *3. Evaluation of the spectral behavior of the absorption coefficient*
 - * Light attenuation measurements over a wide spectral range : 400- 680 nm

$$\frac{I}{I_0} = \exp(-K_{ext\lambda}L)$$

* Kext of cold and laser-heated carbonaceous nanoparticles

* If scattering is negligible:

$$E(m)_{\lambda} \propto K_{abs_{\lambda}} \lambda \simeq K_{ext_{\lambda}} \lambda$$

Experimental set-up - "Delayed" measurements

Experimental set-up - "LII peak" measurements

- * Kabs is wavelength dependent
- * Laser-heating of carbonaceous nanoparticles affects Kabs
- * Laser fluence plays an important role

Results – Laser fluence effect

 $\ast\,$ The variation of Kabs starts already at the LII peak but becomes stronger after few μs

Results – E(m) wavelength dependence

- * Laser-heating of carbonaceous nanoparticles affects the refractive index absorption function
- * E(m) is wavelength dependent both for cold and heated particles
- * E(m) of cold and heated carbonaceous nanoparticles show a different wavelength dependency

Results – Dispersion coefficient

The dispersion coefficient or Ångström exponent, α , is a useful quantity to assess the wavelength dependence of the "aerosol" optical properties.

$$K_{abs,\lambda} = \frac{6\pi E(m)f_v}{\lambda} \propto \frac{1}{\lambda^{\alpha}} \qquad \Longrightarrow \qquad E(m) \propto \frac{1}{\lambda^{\alpha-1}}$$

* α from nonlinear fitting of Kabs curves : 410-600 nm

	LII peak [4 ns]	Delayed [µs]
cold	0.87	1.01
LII-LF	0.94	1.37
LII-MF	1.28	1.68
LII-HF	1.46	2.04

Results – Methane (preliminary)

* Laser-heating of soot particles affects Kabs

- * For cold soot : dispersion coefficient higher than for ethylene (α = 1.8)
- * For laser-heated soot: the dispersion coefficient is the same as for ethylene (α = 2)

Conclusions

- * Extinction measurements have been performed to investigate the effect of laser heating on carbonaceous nanoparticles absorption properties.
- * Laser-heating of carbonaceous nanoparticles affects the refractive index absorption function
- * Such effect increases increasing laser fluence
- * E(m) of cold and heated carbonaceous nanoparticles show a **different** wavelength dependency

Conclusions

* Carbonaceous nanoparticles generated by **Ethylene and Methane** and heated by a strong laser pulse (> 350 mJ/cm²) show the **same spectral dependence of the absorption properties, once they have cooled down**.

1. Best practice for LII measurements

choose wavelengths >550 nm

2. Room for a working definition of BC

"any carbonaceous nanoparticle heated by a high laser density energy"

?

Future work

- * Investigate "different types" of carbonaceous nanoparticles
- * Morphological analysis of cold and heated carbonaceous nanoparticles via TEM
- * Raman spectroscopy measurements to identify chemical bonds and vibrational frequencies responsible for the optical properties of the particles

<u>Acknowledgment</u>

Financial support from the Ministero dello Sviluppo Economico (MSE)

Thank you all for your attention !

Light sources

Kabs evolution with time

Kabs cold soot

