MITIGATING ROADWAY POLLUTION IN URBAN AREAS: LOCATING TRANSIT STOPS Suzanne Paulson

Wonsik Choi, J.R. DeShazo, Dilhara Ranasinghe, Lisa Wong, Mario Gerla, Kathleen Kozawa,* Steve Mara*

***UCLA Departments of Atmospheric and Oceanic** Sciences, Institute of Environment and Sustainability, Public Policy, Luskin Center for Innovation, Computer Science & Environmental Health Sciences

*California Air Resources Board

BY-SA 3.0.

By Frank Hank - Own work, CC https://commons.wikimedia.org /w/index.php?curid=31466645

UCLA

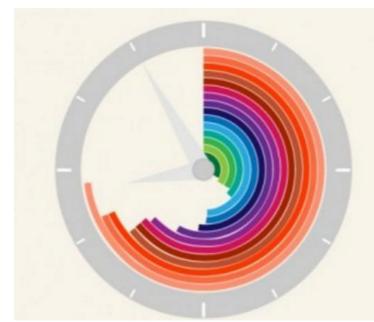
Several people at this conference will discuss how to clean up emissions.

Other people at this conference will (hopefully) convince you roadway pollution isn't good for you.

I'd like to discuss how the built environment design influences how much you breathe.

Aspects of the Built Environment that Influence Exposure

- The heights, size and layout of the buildings
- Where the people are relative to the traffic (land use)
- Barriers between the traffic and people
- Traffic Control Strategies
- Factors influencing transit user exposure


Minutes spent waiting for the bus/train

- Boston, New York City, SF, LA: 36-41
- Brasil: 32 66; Colombia: 22 40;
- Germany, France: 20; UK: 26 32
- Spain: 16 20; Italy: 22-54

Crowdsourced data from Moovit Realtime

UCLA

Rome 44min	lio de Janeiro	41min
Bogota 41min	Athens 39min	
Santiago 39m	in Mexico Cit	ty 39min
LA 39min São	Paulo 38min	Buenos Aires 35min
Istanbul 34min	London 32m	in Madrid 31min
NYC 31min Te	al Aviv 24min	Milan 23min
Paris 23min	Barcelona 22m	In

UCLA

5

METHODS

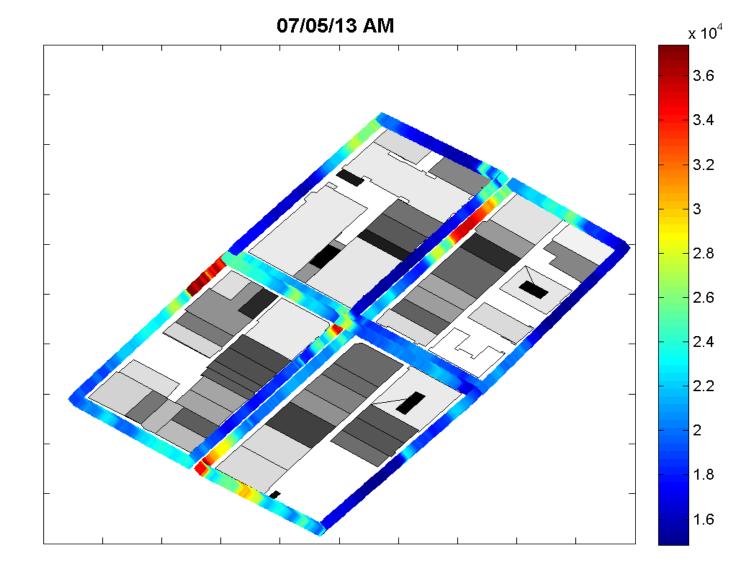
Mobile measurements

UCLA

Mobile Monitoring Platform

Instrument	Measurement Parameter
CPC (TSI, Model 3007)	UFP number concentration (10 nm– 1µm)
FMPS (TSI, Model 3091	I) Particle size distribution (5.6–560 nm)
DisCMini (Testo) DustTrak (TSI, Model 8520)	UFP number and average size PM _{2.5} and PM ₁₀ mass
EcoChem PAS 2000	Particle bound PAHs
LI-COR, Model LI-820	CO ₂
Teledyne API Model 300E	со
Teledyne API Model 200E	NO _x
Teledyne API Model 400A	O ₃
3D-Sonic Anemometer (Campbell CSAT3)	Temperature, Relative humidity, Wind speed/direction, Turbulence Characteristics
Garmin GPSMAP 76CS	S GPS
SmartTether™	Vertical profiles of temperature, <i>RH</i> , wind speed/direction
KciVacs video	Video record for traffic and fleet composition

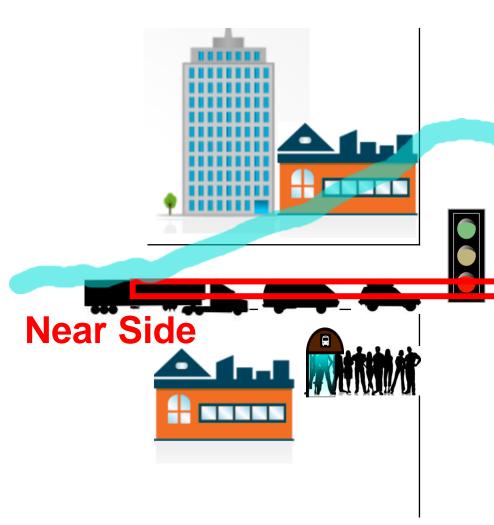
California Air Resources Board Mobile Measurement platform (MMP) Toyota RAV4 electric vehicle



Processing Mobile Data

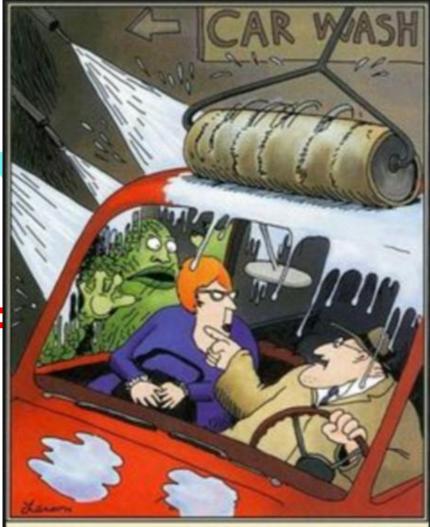
Ranasinghe, D., W.S. Choi, A.M. Winer and S.E. Paulson (2016) Developing High Spatial Resolution Concentration Maps Using Mobile Air Quality Measurements. *Aerosol and Air Qual. Res.* **16** (8), 1841-1853.

5 Meter Spatial Resolution Map for Downtown Los Angeles


UCLA

Decay of pollutants around the intersections: the best place for the bus stop?

Choi, W.S., D. Ranasinghe, J.R. DeShazo, J.J. Kim and S.E. Paulson (2017) *Cross-Intersection Profiles of Ultrafine Particles in Different Built Environments: Implications for Pedestrian Exposure and Bus Transit Stops.* Submitted. UCLA


How Far Should the Bus Stop be from the Intersection?

Gary Larson's Far Side Cartoons

UCLA

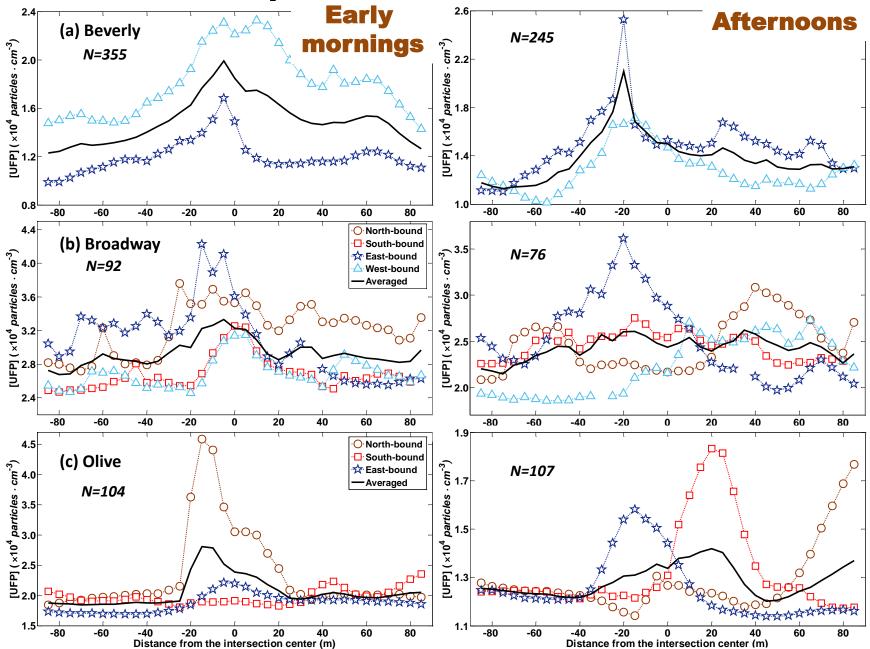
10

"Quick, Agnes! Look! ... There it is again!"

Measurement Sites for Intersection Studies

11

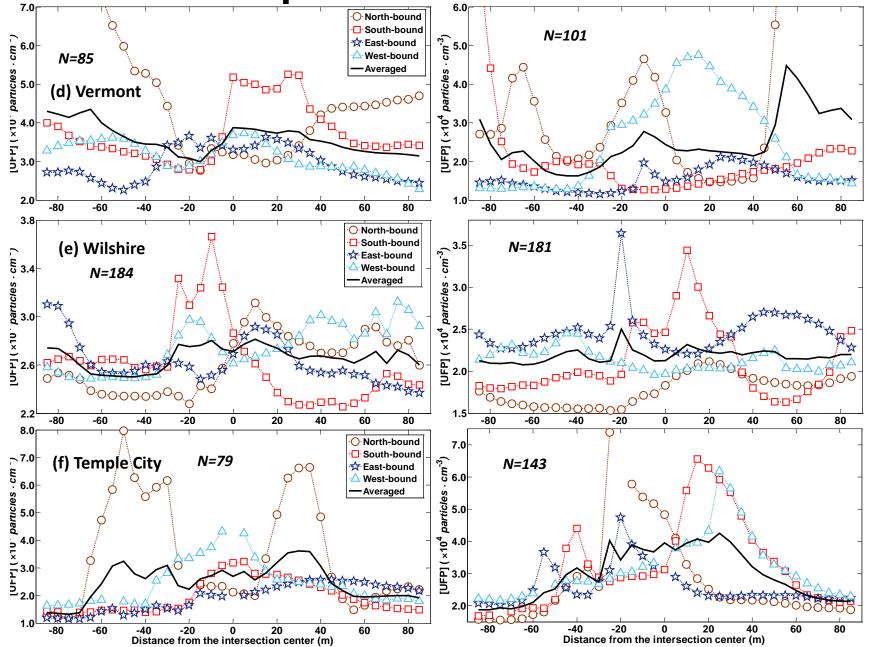
UCLA

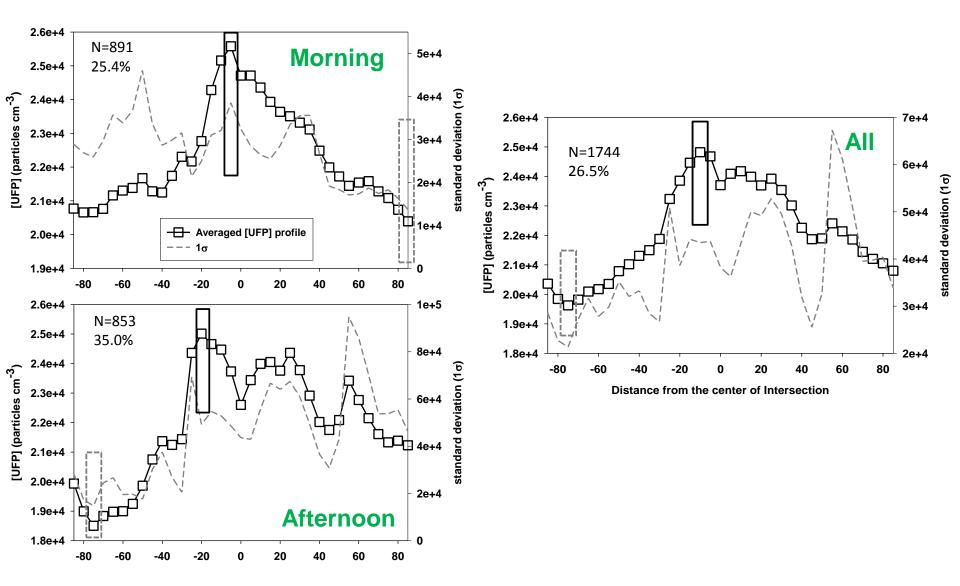


Variety of Intersections; 1,744 Profiles Total

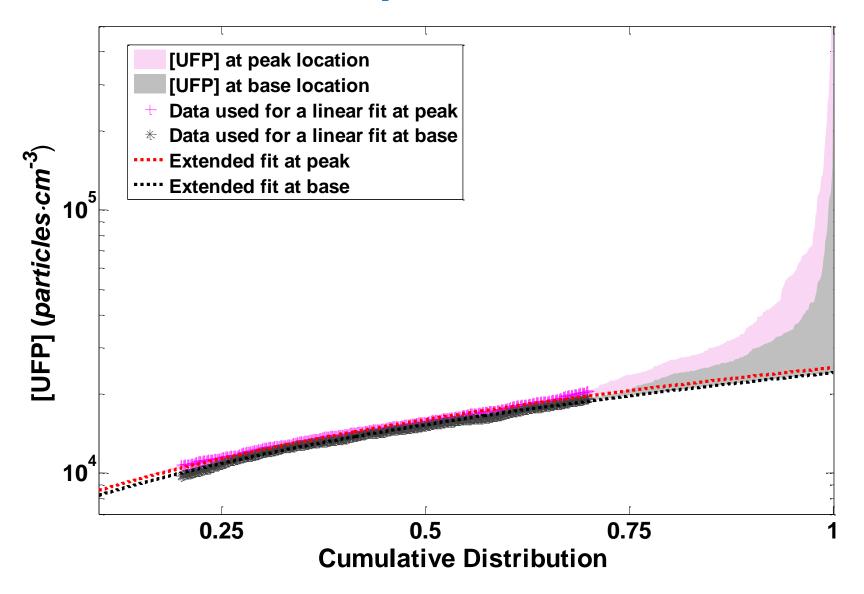
	Wilshire in Beverly Hills (5 inter- sections)	Broadway & 7 th Downtown Los Angeles	Olive & 12 th Downtown Los Angeles	Vermont & 7 th	Wilshire & Carondelet	Temple City & Las Tunas
Street width	30 - 38 m	22 & 26 m	17 & 28 m	25 & 30 m	17 & 37 m	24 & 30 m
Traffic flow rate (A.M.)	24	12 & 15	21 & 4	39 & 10	31 & 31	25 & 28
Traffic flow rate (P.M.)	47	20 & 20	8&3	38 & 12	2 & 27	26 & 29
Traffic density	Long queues, WB in A.M., EB in P.M.	Medium queues, slow vehicle speeds	Minimal queues	Long queues, often for entire block	Short queues	Long queues but queues dissipate rapidly
Distance between traffic lights	330 m	125 - 200 m	(1) 180 m (2) 125 m	(1) 224 m (2) 174 m ^c	(1) 190 m (2) 100 m	(1) 200 m (2) 135 m

13 UCLA


Cross-intersection profiles of UFPs for each traffic direction

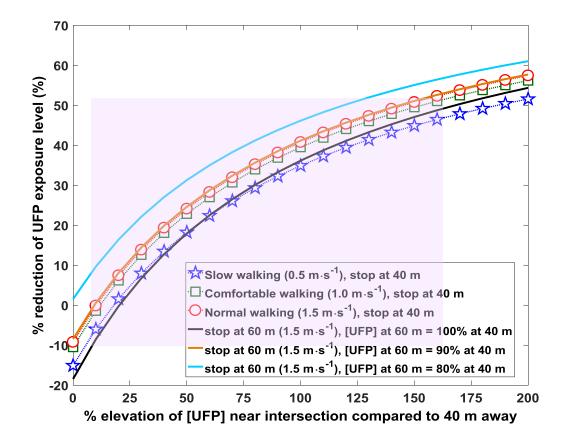

14

UCLA


Cross-intersection profiles of UFPs for each traffic direction

Average Profiles

Cumulative distributions of UFPs at the peak and base locations of the profile


UCLA

Exposure level of transit-users to UFP around intersections

Simple time-duration model to simulate exposure reductions when the bus-stop is moved from 20 m to 40 m (or 60 m) from the intersection:

Set two UFP zones: within \pm 20 m of the intersection (high UFP) vs. around (40 and 60 m) (low UFP).

Transit-user's behavior includes disembarking, walking, crossing the intersection, waiting for a bus; assuming three pedestrian walk speeds: 0.5 (slow), 1.0 (comfortable), and 1.5 m/s (normal). Waits at the bus stop for only 10 minutes!

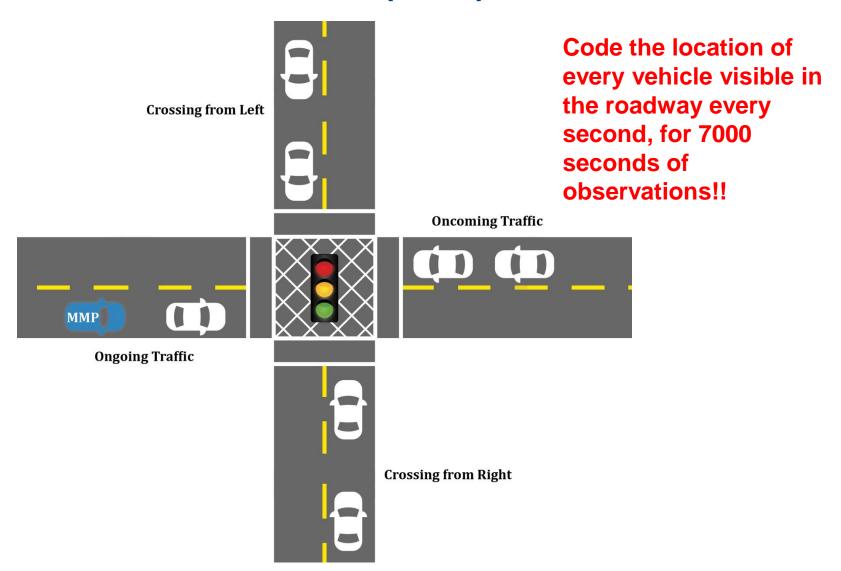
17

UCLA

Modeling the Determinants of Highly-localized UFP Concentrations

18

UCLA

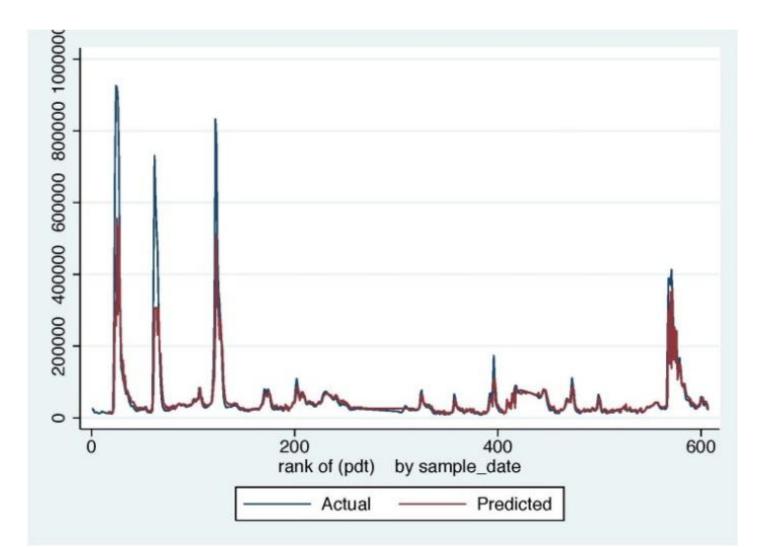

J.R. DeShazo, Suzanne Paulson, Lisa Wu, Owen Hearey, and others

Broadway Transect in Downtown Los Angeles

- April-July 2008
- ~5 km long
- 12 MMP runs
- ~7000
 observations

Intersection Diagram with Mobile Monitoring Platform (MMP)

Modeling the effects of highly-localized factors

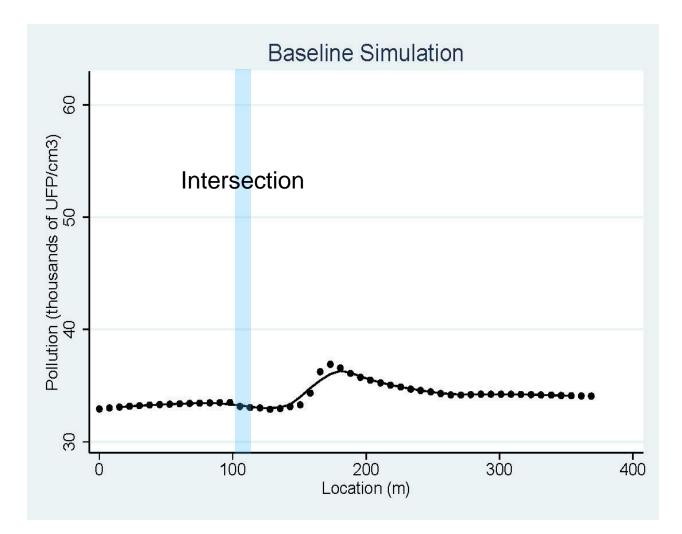

UCLA

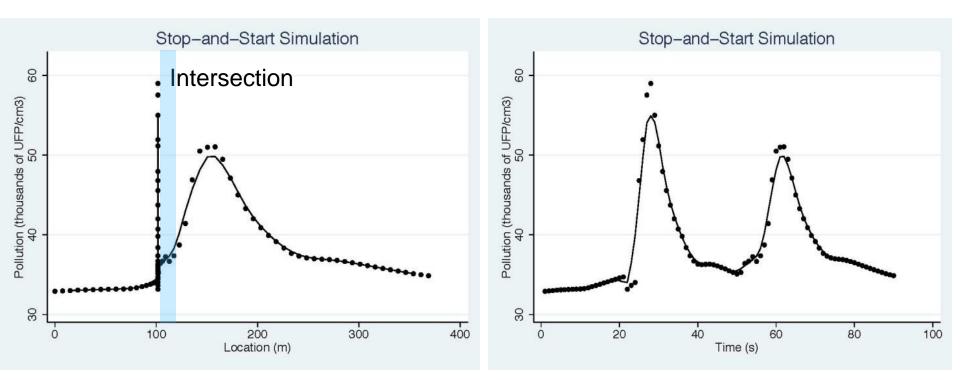
21

UFP = f(emission sources, sources of mixing atmospheric conditions, built environment, position of the mobile monitoring platform, constant background concentration)

Regression model will seek to explain the concentration of UPF measure as function of a these explanatory variables.

Validating the model's predictive power: Actual v. Predicted UPF Concentrations


Cumulative impacts of factors on street level UFP


UCLA

- Top five factors:
 - Medium/Heavy Duty Vehicle in On-going traffic
 - Medium/Heavy Duty Vehicle crossing from the left
 - Bus crossing from the left
 - Being in an intersection
 - Difference in building heights between the two sides of the street.

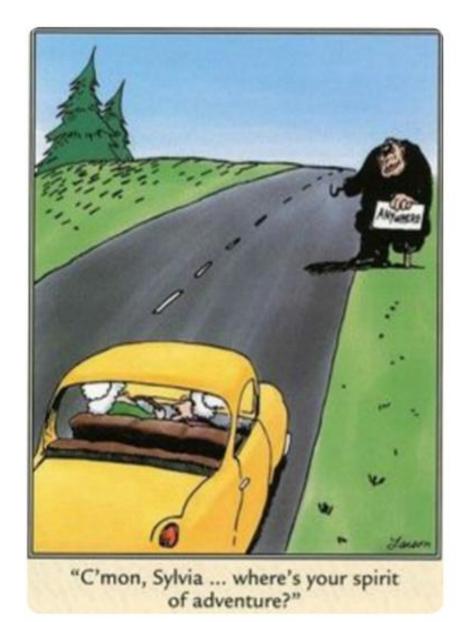
Cumulative Impacts of Traffic Events (in thousands of particles/cm ³) 24					UCLA
	Impact	Std. Error	95% Con	f. Interval	
MMP State of Motion and Speed					-
Idle-to-moving	-28.65	(-11.4)	-50.99	-6.31	
Speed (m/s)	-15.32	(-5.74)	-26.56	-4.07	
Lane number	15.73	(-4.47)	6.97	24.49	
On-going Traffic					
Light-duty	9.78	(-14.01)	-17.69	37.24	
Medium & Heavy-duty	142.76	(-90.31)	-34.26	319.78	
Buses	-25.66	(-155.91)	-331.25	279.92	
Acceleration event	-58.7	(-122.98)	-299.74	182.34	
On-Coming Traffic					
Light-duty	-0.99	(-16.77)	-33.85	31.87	
Medium & heavy-duty	-18.8	(-57.18)	-130.88	93.28	
Buses	-21.31	(-71.44)	-161.34	118.72	
Acceleration event	-158.72	(-127.01)	-407.66	90.22	
Crossing from the Left Traffic					
Light-duty	30.05	(-34.74)	-38.04	98.15	
Medium & heavy-duty	80.79	(-76.07)	-68.31	229.89	
Buses	92.64	(-111.96)	-126.8	312.08	
Acceleration event	26.96	(-98.47)	-166.05	219.97	
Crossing from the Right Traffic					
Light-duty	-10.94	(-58.6)	-125.8	103.92	
Medium & heavy-duty	-30.58	(-162.81)	-349.68	288.53	
Buses	54.04	(-59.01)	-61.61	169.69	
Acceleration event	52.59	(-50.29)	-45.98	151.17	
Built Environment					
Intersection	320.15	(-120.69)	83.6	556.7	
Average building height (m)	1.7	(-4.5)	-7.13	10.52	
Building height differential (m) ^a	233.06	(-270.62)	-297.36	763.48	

"Free-flow" Simulation Results

Summary for Planners

UCLA

Management	Suggested Direction	Approx. Size of Effect	Atmospheric Conditions & Notes
Traffic Management	Fewer stops and smaller queues reduce emissions and elevated concentrations around intersections	Factor of 2 - 4	Concentrations depend on emissions, micro- scale turbulence, dispersion, transport from nearby streets, and other factors
Bus/Transit Stop Siting	Further from the intersection is better, but improvements diminish within several tens of meters, depending on built environment (block length, queue length, etc.	Up to approximately a factor of 3	Measurements are available for calm to moderate winds, when the effect is likely to be strongest.


UCLA

28

Management	Suggested Direction	Approx. Size of Effect	Atmospheric Conditions & Notes
Sensitive	Further is better, but	Up to a factor	More important
uses near	under normal daytime	of four or	when windspeeds
highways:	conditions 150 meters is	more.	are lower.
Daytime	sufficient.		
downwind			
Sensitive	1500 meters is	Up to a factor	Concentrations are
uses near	desirable.	of four or	typically highest in
highways:	Other mitigation	more.	the morning, so
Night/Morning	strategies:		this is a period of
downwind			greatest concern.

Other Mitigation Options: Build solid barriers (quite effective); Grow trees (less effective but worthwhile), move physical education classes later in the day; filter indoor spaces

Thank you for your attention

