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Introduction

Volatile materials in exhaust condense onto soot particles and nucleate new

P

articles.

Useful metrics: SMF (Soluble Mass Fraction) and VMF (Volatile Mass Fraction)
Use deliquescence measurements to quantify SMF.

Use volatility measurements to quantify VMF.

Explore SMF & VMF variation with distance in plume.
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SMF increases with fuel sulfur content and engine power condition,
and decreases with particle diameter

Comparing SMF and VMF as a
function of particle diameter

for lower sulfur fuels

For fuels with lower sulfur
content their VMF values are
found to be greater than SMF.
This indicates that not all
volatile material is water
soluble, for the fuels with
lower sulfur content. The CC
values are correlation
coefficients and reflect
confidence in the linear fits to
the data.

Conclusions

SMF can be measured via deliquescence.
VMEF can be measured via thermal desorption.

— Increase with fuel sulfur content and engine power.

— Decrease with particle diameter.
VMEF increases with decreasing engine power and hence longer

Project AFFEX-2

OBJECTIVE

Perform static aircraft engine testing using

Hydro-treated Renewable Jet (HRJ)

and other fuels to determine effects on

engine performance and emissions.
APPROACH

Utilize the NASA DC-8 aircraft with CFM 56
engines at the Dryden Operational Facility in

Palmdale, CA to perform emissions testing

using various alternative fuels and a JP-8
reference fuel, and obtain gaseous, solid,

and aerosol samples for analysis at 1,

30, and 145 meters downstream of the

aircraft engine exhaust.

Fuels Studied HRJ (Beef HRJ - JP8 FT FT+THT
Tallow) Blend (CTL)

Differences in fuel properties, especially fuel aromatic content and
fuel sulfur content can influence PM Emissions
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VMF Studies Proportionality Constant (b) vs Engine Power
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FT+THT has highest propensity for collecting volatile material, as
evidenced by largest b value for the fuels studied.
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The FT+THT fuel has the highest propensity for collecting volatile
material in the plume, with HRJ coming next. The ordering of the
other fuels changes with engine power.

— Not all volatile material is water soluble.
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e SMF is found to
o
residence time in plume.
[ ]
 For low sulfur fuels
— VMF > SMF
]

For high sulfur fuels
— SMF > VMF
— SMF and VMF are highly correlated.

Comparing SMF and VMF as a
function of particle diameter
for higher sulfur fuels

For fuels with higher sulfur
content their SMF values are
found to be greater than VMF.
The CC values are correlation
coeffients and reflect confidence
In the linear fits to the data.

Methodologies for VMF and SMF

VMF Methodology

distributions.

e Measure the total and non-volatile size

e Take the non-volatile size distribution and
calculate what it’s size distribution would
become, when it gets coated with volatile
material, assuming that that the non-volatile
particles collect a volume of volatile material
proportional to their surface area, with

SMF Methodology

e Measure dry diameter.

e Measure wet diameter, (86% RH)

e SMF = (sol mass)/(tot mass)

e Calculate critical supersaturation
(assuming soluble material sulfuric acid)

proportionality constant b. b is the object of the
measurement.

e Adjust b to minimize the difference between the
GMD for the modeled total size distribution and
that for the measured total size distribution.

p. = Soot density

e Use b to calculate a Volatile Mass Fraction, VMF.

vmf. = p bx2/[(1/6)px3> + p bx.2]

p, = Density of volatile material

VMF vs Particle Diameter
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VMF increases as engine power decreases and has its highest value
for the FT+THT mixture.

Correlation Summary

Fuel Pwr%
JP8 30
85
HRJ 30
85
FT 30
85
HRJ-JP8 30
85
FT-THT 30
85

Correl
Coef
0.64
0.86
1.00
0.48
0.75
0.27
0.73
1.00
0.99
0.94

Weighted Avg

0.97
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