NPTI APPROACHES FOR DENO_X-SYSTEMS

Dr. J. Czerwinski, AFHB Dr. A. Mayer, TTM Th. Lutz, ETHZ

Focus Event, 22. Nanoparticle Conference, ETHZ 21.06.2018

HD vehicles with DPF + SCR TeVeNO_x

2012-2013

TEVENO_X ...

Testing of Vehicles with NO_x-Reduction Systems

SAE Paper 2014-01-1569

<u>3 Types of vehicle tests</u>

TEST TYPE 1

• HD Chassis Dynamometer

TEST TYPE 2

• Real World Operation on the Road

TEST TYPE 3

Simple Function Test
(short operation on the road)

Investigated vehicles

Investigated vehicles:

Vehicles		Exhaust system	Vehicles		Exhaust system
A	Bus Volvo 180 kW	DINEX DPF+SCR retrofit	F	Mercedes Actros Blutec 6	OEM CRT+SCR
В	Bus volvo Hybrid			330 kW 12000km	ORTIOOR
	158 kW	DFF+SCR	G	DAF Truck	OEM SCR
С	Actros 300 kW	OEM SCR	н	MANTGS	OEM SCR 00KM
	570 km Mercedes		T	400 kW	OEM SCR 84.9 T km
D	Actros 300 kW 500520 km	OEM SCR	J	Mercedes Actros 260 kW	NOxOFF DPF+SCR retrofit
E	MAN TGS 397 kW 220 km	OEM SCR + DPF retrofit		200 100	louon

•

Vehicle E on the MAN HD chassis dynamometer with OEM SCR & retrofitted DPF

Sampling positions on vehicle F

engine-out

Measuring set-up with vehicle G

tailpipe

NP measurement apparatus

engine-out

Some results

Switch-on dosing

retrofit system cDPF & SCR; $\alpha = 0.75$ vehicle A; ULSD; Chassis Dyno

÷

K_{NOx} with different analyzers at stationary operation

OEM SCR; dosing & dosing not activated vehicle C, ULSD; Chassis Dyno LARAG

Vehicle F; ULSD; AdBlue; Dosing activated

 $\underbrace{(1)}_{-}$ 2CLD whole trip, average trips 4,5,6

(2) CPK only active periods, average trips 4,5,6

SWOFF - intervention of ECU after long idling

OEM SCR; dosing activated Vehicle D; ULSD; Chassis Dyno LARAG

Experiences in TeVeNO_x (1)

<u>De-NO_x Rates</u>		PCFE
BusA	80-85%	99.9%
Bus B	30-70%	DPF not tested
Truck C	88-95%	no DPF
Truck D	42-88%	no DPF
Truck E	84% (OP1)	99.5%
Truck F	63-94%	99.9%
Truck G	28-70% Diesel	no DPF
	19-55% D/CNG	
Truck H	20-84%	no DPF
Truck I	20-92%	no DPF

University of Applied Sciences Biel-Bienne, Switzerland

General conclusions TeVeNOx

- The foundations for the quality verification procedures of SCR-systems are established,
- The SCR-systems are not active at lower temperatures $< 200^{\circ}C$,
- SCR-testing on vehicle is a better approach than on engine dyno,
- simple & low-cost quality check is possible.

LD vehicles with DPF + SCR

IUCD...In Use Control Diesel

IUCD: exhaust emissions during const. speed, with cold start

Vehicle 1; EGR, DOC, DPF, SCR; fuel: Diesel; tailpipe.

IUCD: exhaust emissions during const. speed and idling.

Vehicle 2; EGR, DOC, DPF, SCR; fuel: Diesel; tailpipe.

IUCD: exhaust emissions during const. speed and idling.

Vehicle 3; EGR, DOC, DPF, SCR; fuel: Diesel; tailpipe.

IUCD: catalyst temperature during const. speed and idling.

Vehicle 3; EGR, DOC, DPF, SCR; fuel: Diesel; tailpipe.

Complementary information

(to be required)

- o OBD data, NO_x -sensors
- o AdBlue indication
- o AdBlue purchasing and consumption
- o Visual control of AdBlue system

Open questions

- Fixing of the minimum limit value of NO_x reduction rate (RR)
- o Solution of the question "wheel-stop \rightarrow RAI-stop",
- fixing of the time to drive after load jump for LD and for HD
- o More testing for statistical robustness
- o Testing of LNT
- o Testing with failures

VERTdeNO_x certification protocol

For HD/LD SCR-retrofit

VERTdeNO_x Testing Procedures for HD/LD SCR-retrofit

Vehicle equipped with a VERT-conform DPF-system

Conclusions

- With DPF, SCR and GPF, it is possible to:
 - Eliminate PN and
 - > Reduce NO_x below the legal limits
- Quality control in-use is possible (for deNO_x PTI more efforts are necessary)
- Quality procedures for deNO_x systems are elaborated

