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Fig. 1 – Raw data from a logger. Lighter points are older

Idle pressure
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Fig. 5 – Detected idle pressures and trend line

Data loggers record thousands of data points each day, yet they are 
usually only used to check against fixed thresholds – with the appropriate 
computations we can detect faults in the instruments of the logger and 

even attempt to forecast the level of ash deposits.

Motivation

Data loggers usually take measurements every 10 seconds. This 
means that even in their simplest version – where they record only 
the timestamp, temperature, and pressure – they generate more than 
a thousand data points per hour. (See fig. 1) Despite the plethora of 
available information in most installations only a hard upper bound 
is checked on the vehicle itself, while a basic distribution analysis can 
be performed off-site. (See fig. 2 for an exemplary output of such an 
analysis.) Such an approach does indeed provide some insight into 
the prevalence and distribution of dangerously high or low readings. 
It does not, however, leverage the fact, that apart from the raw num-
bers there is more information hidden between the measurements.

Data quality
In order to draw implied conclusions from the readings, we have first 
to ensure the soundness of the underlying data. The first verifica-
tion which is applied to the data and which can be executed on the 
fly are – similarly to the current use – lower and upper bounds for 
the values. A temperature measurement of the exhausts of a com-
bustion engine below 50 degrees or above 1,000 degrees are phys-
ically infeasible and thus more than likely an indicator of a defec-
tive detector or an even more serious fault. The same goes for the 
pressure, where values above 600 mbar or long streaks of 0 mbar 
measurements should not be expected and therefore appropriately 
flagged. (The exact values should be tailored in cooperation with the 
manufacturers to the specific make of the car and filter as well as any 
other material factors. We have used reference values provided by 
the VERT-Association.)

After flagging the improbable values we proceed to divide the time 
series into operation cycles, which we define as consecutive mea-
surements with a gap of no more than two minutes. This allows us 
to consider even such use cases like a public bus with its numerous 
stops from its departure until its return to the base as one operation 
cycle. Using those cycles we determine the ratio of suspect values to 
the regular ones. If it exceeds a certain threshold – we assumed 10% 
– the entire cycle is deemed untrustworthy and discarded; otherwise 
only the offending measurements are omitted.
Having removed observations on grounds of their extreme values 
we now turn to their variability. It is, after all, highly unlikely that 
either the temperature or pressure of the exhausts of a combustion 
engine will be (nearly) constant for any perceivable period. We do 

not, however, resort to the data’s variance – primarily due to its lack 
of robustness, which means that a single outlier can arbitrarily influ-
ence the final value. Instead we turn to a central expression of infor-
mation theory: entropy. Entropy, as defined by Claude Shannon, is 
quite similar to the analogous term in Thermodynamics, where it was 
introduced by Rudolf Clausius and later elaborated on by Ludwig 
Boltzmann: Considering a distribution  of measurements over the 
set of all possible measurements Z it is given by

Entropy by itself has the drawback that its value depends on the 

number of observations. In order to avoid this pitfall, we normalise 
with the maximal attainable entropy, which can be computed as  

, where n is the length of the observation and m the 
maximal possible number of distinct observations. The expression,

is the bounded efficiency of the distribution of measurements . For 
the purpose of this project we accept only operational cycles with 
efficiency greater than 0.3. (See fig. 3 for an exemplary evaluation of 
the efficiency.)

Determining ash levels
With only those measurements left, which are considered plausible, 
we can try to infer the ash levels of a filter. Obviously it will be im-
possible to determine the actual levels having only measurements 
of temperature and pressure at our disposal, but we have a good 
proxy: when the ash levels increase in a DPF, so does the pressure 
during idle operation. Therefore we have to extract the times, when 
the machine was idling and examine the pressure during those peri-
ods. To do so we consider the temperature. During idling the engine 
does not perform any work and can cool down, which also results 
in cooler exhausts – this can be observed as an exponential drop in 
the readings. This suggests the following procedure to determine the 
back-pressure during idling:

• Find all decreasing segments in the temperature readings
• Try to fit an exponential decline
• If there is no fit, discard the segment, otherwise compute the aver-

age pressure in this time frame

Fig. 5 shows such idle back-pressures in relation to operating hours.

Finally a trend line can be fitted to the idle pressures. Due to the na-
ture of the ash sediments an exponential regression should be used.  
(Fig. 4 shows how such a regression stabilises with increasing num-
ber of observations.) With a sufficient number of empirical values a 
threshold for the projected idle pressure might be given, which could 
correspond to a filter that has to be cleaned from ash.
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Start of measurement:
Duration of measurement: 2d 8h:50m:40s

10 sec.Interval:
Counts: 20463
Usable: 20431(99 %)

Trap: Yes

Pressure [mbar] Temp. 1 [°C] Temp. 2 [°C] RPM [RPM]
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Standard dev.

330 616 - -
0 56 - -
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79.03 396.98 - -
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Fig. 2 – Output from a current analysis-tool
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Fig. 3 – Efficiencies of the measurements
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Fig. 4 – The slope of the regression vs. number of observations


