

Measuring ultrafine particles emitted by gasoline direct injection engines: the PEMS4Nano Project

<u>C. Focsa¹</u>, D. Duca¹, J. A. Noble¹, Y. Carpentier¹, M. Vojkovic¹, C. Pirim¹, B. Chazallon¹, A. Manz², R. Grzeszik², M. Lyska², T. Tritscher³, J. Spielvogel³, S. Legendre⁴ and M. Rieker⁴

¹Laboratoire de Physique des Lasers, Atomes et Molécules, Université de Lille, Lille F-59000, France ²Bosch Research, 71272 Renningen, Germany ³TSI GmbH, Neuköllner Str. 4, 52068 Aachen, Germany ⁴ HORIBA Europe GmbH, Landwehrstrasse 55, D-64293, Darmstadt, Germany

Automotive Test Systems

Invented for life

Portable Nano-Particle Emission Measurement System

H2020 Green Vehicles action

- Current certification procedures are not able to detect ultra fine particles (< 23 nm)
- PEMs4Nano will develop robust and reliable measurement procedures for both the development of lower emission engine technologies, as well as serving as a solid basis for new regulations

Portable Nano-Particle Emission Measurement System

Physico-chemical characterization of the smallest particles emitted by internal combustion engines

Size-selective sampling and off-line analyses

by mass spectrometry, electron and atomic force microscopy, Raman spectroscopy + advanced statistical anlysis

Invented for life

Scientific

On-line analysis by
Laser-Induced Incandescence

Results & importance

Extensive database on size-dependent particle structure, morphology, chemical composition ... for various working regimes of the single cylinder engine – used as particle generator

Input for the complex model developed by CMCL & U. Cambridge

PEMS4Nano prototype optimization & Possible use in other projects for engine optimization

rolus

cmc

... Future implementation on Multi-Cylinder Engine

Experimental setup – Single Cylinder Engine

Chemical composition analysis

Chemical & structural analysis (mass spectrometry & microscopies)

Principal Component Analysis

Mass spectrometry techniques

Two step Laser Mass Spectrometry (L2MS)

Ionisation sources for L2MS chemical characterisation

1 LASER DESORPTION: Nd:YAG (λ = 532 nm, 266 nm), 10 ns, 10 Hz, E_{max} = 0.1 – 1 J/pulse

2 LASER IONISATION:

- > 4^{th} harmonic Nd:YAG, λ = **266 nm**, 10 ns, 10 Hz, E_{max} = 100 mJ/pulse
- 118 nm source (9th harmonic Nd:YAG)
- ► 157 nm F₂ excimer laser

3 DETECTION: Reflectron Time-of-Flight Mass Spectrometer

Complementary ionisation schemes in the VUV

Two-step Laser Mass Spectrometry Performances in Soot Analysis

- m/z detected typically up to 1000 Th (for soot)
- Mass resolution ~1000 ... 20 000 with new high res instrument
- High sensitivity to PAHs ... LOD ~ 10 attomol per laser shot (~10⁻⁵ ML) thanks to the resonant absorption at 266 nm (REMPI)
- Control the fragmentation degree
- Control the desorption depth
- (Semi)quantitative approach possible through external standard calibration, ionization cross section corrections

Faccinetto et al., Combust. Flame, **158**, 227 (2011) Environ. Sci. Technol. **49**, 10510 (2015)

R2PI at 266 nm

Spectra dominated by aromatic species

Lower mass distribution for smallest particles

SPI at 157 nm

Nitrogenated hydrocarbons are present

SPI at 118 nm

Spectra contain other chemical families

- Less obvious difference for smallest particles
- Need to use statistical analyses to differentiate

•

R2PI at 266 nm

Principal Component Analysis

Chemically differentiate particles of different sizes

•

SPI at 118nm

Chemically differentiate particles of different sizes

SIMS

• Spectra are dominated by aliphatic fragments

Mass defect for identification of various classes

Size-dependent chemical analysis

"Heavily used"

Combustion of the oil film

2

1

0

Clear trends in size and source have been identified for:

- Cycloalkane and bicycloalkane **fragments** ($C_n H_{2n-3}$) - markers of lubricating oil
- **Polycyclic aromatic** hydrocarbons (PAH) - building blocks of soot particles

Size variation by chemical category delivered as key input to the Model Guided **Application (U.Cam + CMCL)**

MGA: chemical characterisation

Operating point (2000 rpm, 8 bar)

3000

- Increase in organic carbon from 32 – 56, then starts to decrease
- Decrease in elemental carbon as size increases

- Increase in SOF thickness up to about 30 nm before decreasing
- Trend agrees with ULL's results, assuming the laser technique has a fixed penetration depth
- Decreasing SOF mass fraction with size (in line with findings in the literature)

10²

 $d \,[\mathrm{nm}]$

10¹

SOF mass fraction [-]

- Size distribution explains the position of the peak in the SOF layer thickness plot
- Condensation of SOFs is collision based, roughly proportional to the number density

UNIVERSITY OF CAMBRIDGE

Regime discrimination

SIMS

Identification of chemical markers to discriminate particles produced in different engine conditions as benchmark for MGA

e.g.: aliphatics discriminate optimal from non-optimal regimes

Source discrimination

SIMS

Conclusions

- The combination of L2MS, SIMS and PCA allows determination of detailed molecular level surface chemical composition of soot particles.
- The use of size-selective sampling allowed us to chemically characterise surface chemistry of particles down to 10 nm.
- Identification of key chemical markers, coupled with powerful PCA statistics, allowed discrimination of:
 - Gasoline-specific (PAHs, phenol, nitro-phenol)
 - Lubricant-specific (Hopanoids, steranes and cycloalkanes)
 - Engine-specific (metals and metal oxides)
- By identifying marker species, we have clearly discriminated particles by source,
 particle size and engine regime

Thank You !

L2MS performance

- ▶ Mass resolution m/ Δ m ≈ 1000
- Masses detected typically up to m/z 1000 (for soot)
- High sensitivity to PAHs:
 LOD ~ 0.1 fmol per laser shot
 (REMPI 266 nm)
- Control the fragmentation degree
- Control the neutral / ion formation
- (Semi)quantitative approach possible
 through external standard calibration
- Surface analysis

desorption: 532 nm - ionisation: 266 nm 1,0 0,8 Normalized intensity 0,6 0,4 0,2 0.0 100 200 300 400 500 600 700 800 0 m/z « Light » _{ION}=0.1 J/cm² ION=0.5 J/cm² **Radicals** _{ON}=1.0 J/cm² and Atoms Pyrene =2.5 J/cm² 3 « Heavy (202 u) Signal (V) 2 Radicals C_xH_y 1코 Aromatic 0.5 Fragment 0.4 0.3 0.2 0.1 0.0| 10 20 30 40 50 60 70 Time of flight (µs)

Particulate matter collection campaign

Laboratory single cylinder test engine (Bosch)

•

Comprehensive collection of particulate matter

UNDERSTANDING, ACCELERATED

- borosilicate filters
- Size-selected collection methods (down to 10 nm)

SPI at 157 nm

R2PI at 266 nm

SPI at 118 nm

Principal Component Analysis

- Peak areas compared within a spectrum (variables)
- Variance between all spectra calculated (orthogonal transformation)
- Loading per mass unit allows chemical attribution of Principal Components

MGA: chemical characterisation

Data from Uni of Lille's measurements campaign at Bosch SCRE

Size-resolved chemical characterisation

- Experimental technique used focuses on surface concentrations
- MGA tracks the thickness of the SOF layer in addition to SOF mass fraction
- It is assumed that the experimental technique only characterises the particles up to a certain depth and the results are not representative of the bulk content

