Particle Number Emissions from In-Use Transit Buses with Advanced SCR Systems

David Kittelson and William Northrop – University of Minnesota Andrew Kotz – National Renewable Energy Laboratory

On-road transit bus emissions

- This is an extension of a project comparing NOx emissions of SCR equipped 2013 and 2015 MY (Model Year) buses
- Increased PM and especially PN have been reported with SCR plus DPF compared to DPF alone*
 - Suggest PN are semi-volatile but still detected by PMP method
 - Suggest PN increases with urea dosing increasing ammonia to NOx ratio (ANR)
- This motivated us to do preliminary study of on-road PN measurements. That work is the topic of this presentation

*See for example: Carslaw et al. Atmospheric Environment 105 (2015) pages 70-77: Robinson, et al., SAE Technical Paper 2016-01-0995, 2016

Understanding on-road NOx and PN emissions

- 2013 engine class met certification, but had high emissions under real-world driving conditions
- Known disconnect with between certification and real-world
- 2015 MY bus had substantially lower real world NOx emissions using model based control with average ANR > 1
- What about PN?
 - 2015 vs 2013 MY
 - Role of ANR

Data Presented at 2016 CRC Conference

Test Vehicles

- 40' GILLIG Buses
 - 8.9L Cummins ISL
 - 2013 certified
 - Emission control system consisting of DOC, DPF, SCR, and NH₃ slip catalyst
- Main differences between 2013 and 2015 MY emission control system, for 2015:
 - Remove NH₃ sensor
 - Model-based dosing

Instruments and Data Acquisition

Data

- **Data Acquisition**
 - NI cRIO controllers
 - J1939 CAN interface NO_x Sensors
 - GPS location
 - 1Hz data collection
 - Wireless data streaming
 - TSI NPET 3795
 - Designed for Swiss heavy-duty IM program
 - Not PMP complaint
 - Measures solid particle number greater than ~ 20 nm

Cycle Averaged NOx Comparison

- Results by Route
- 2015 MY compared to 2013 MY
 - No change in engine out NOx
 - No change in average power
 - 80% NO_X Reduction
 - 25% Dosing Increase
 - Average ANR >1

Engine Out vs Tailpipe NO_X

- NO_X Conversion: Tailpipe vs Engine Out Concentration
 - 2015MY
 - Near Constant conversion > 90%
- ANR
 - 2013MY 5 bands
 - 2015MY 1 large band closer to stoichiometric ANR of 1.0

PN Test Conditions

2015 MY Testing

- November 18th, 2015
- Temperature: 48°F

2013 MY Average PN

- November 17th, 2015
- Temperature: 52°F

Particle Number Measurements

Post SCR Particle Count: Influence of ANR and power

Density Plots

- Multiple formation modes
 - No clear trend with ANR
 - Increase with power
- 2015 MY Average PN

 1.27X10¹¹ particles/kW-hr
- 2013 MY Average PN
 - 1.34X10¹⁰ particles/kW-hr
- Why are 2015 emissions higher?

Regen Event

Regen Event

Regen Removed

20000

20000

2015 MY

2013 MY

30000

 2015 MY 2013 MY

30000

- 2015 MY Average PN
 - 1.27X10¹¹ particles/kW-hr
- 2015 Regen Removed
 - 7.81X10¹⁰ particles/kW-hr
- 2013 MY Average PN
 - 1.34X10¹⁰ particles/kW-hr
- All values well below PMP heavy-duty standard
 - 6x10¹¹ particles/kW-hr
- Strong influence of regeneration
 - Higher emissions continue after regeneration until soot cake develops
 - Somewhat higher emission even in absence of regeneration

Expectations – VPR (CS) should remove semi-volatile particles

- On regeneration
 - Release of stored *semi-volatile* material
 - Sulfuric acid, ammonium sulfate
 - Heavy hydrocarbons adsorbed on soot
 - Removal of soot cake, *solid particle release*
 - Some penetration of fragments of soot cake
 - Increased fresh soot penetration as soot cake is reestablished
 - Particles related to urea dosing
 - Incomplete evaporation / conversion leading to urea decomposition products, "solid" or semi-volatile
 - At ANR > 1 ammonia penetration leading to ammonium sulfate, ammonium nitrate, ..should be *semi-volatile*

Issues

- Nature of SCR related particles
 - Urea, ammonia related compounds "solid" or semi-volatile
 - TGA shows some urea related compounds less volatile than tetracontane
 - TGA may be poor predictor of behavior of suspended particles
 - Was PMP method intended to classify such particles as "solid"?
- Removal of semi-volatile material by VPR in this case catalytic stripper
 - Meets tetracontane removal specifications
 - Are "solid" particles during regeneration real or VPR overload*
- It would be useful to compare PN emissions from urea spray and gaseous ammonia SCR

*See for example: Johnson, et al., Aerosol Science and Technology, 43:962–969, 2009. Swanson et al., Journal of Aerosol Science, Volume 41, Issue 12, Pages 1113-1122.

Summary

- Changes in SCR system between 2013 and 2015 MY led to more than 80% reduction in on-road NOx emissions
 - FTP certification levels essentially unchanged
 - Great improvement in real driving emissions
- However, these changes were associated with significantly higher PN emissions for 2015 MY bus
 - Not designed to meet PMP standard, but still well below standard
 - Increased ANR may play a role but decrease in emissions with ANR unexpected
 - Regeneration and associated higher emissions as soot cake redevelops main difference between 2015 and 2013 results but difference remains without regeneration
- This was preliminary study additional work needed

13

Thank You

Questions?

Drive Cycles – Fast Route

Drive Cycles – Slow Route

