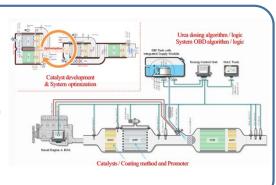


Development of DPF, SCR system with low balance point temperature

for retrofit market of diesel engine

Korea Institute of Energy Research

Ahyun Ko, Youngmin Woo, Jinyoung Jang, Yongjin Jeong, Young Jae Lee


No. 40

22nd ETH-Conference on Combustion Generated Nanoparticles

Introduction

- 1) Old diesel vehicles are emitting relatively high particle and NOx emissions
- 2) The Ministry of Environment in Korea is trying to reduce the emissions from old diesel vehicle through some policies such as installation support of after-treatment system
- 3) This research is focused on the reduce the BPT of the DPF to 250°C or less through improvement of catalyst coating method and adoption of promoter while lowering the precious metal catalyst coating amount
- 4) Also, control logic for SCR system suitable for DPF with low BPT is developing

<Emission analyzer>

(MEXA 1400QL-NX)

NOx reduction by stored NH3

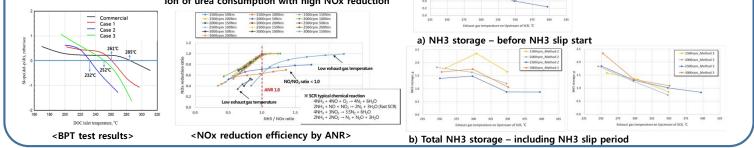
<NH3 storage-release test method>

Test engine & Methodology

1) BPT of DPF

- Engine operating condition : 2000rpm, EGR off, From 200°C to 300°C
- The differential pressure of DPF is measured and the temperature without change of the pressure is defined as BPT

2) SCR test


- ANR(Ammonia to NOx ratio), NH3 storage & release characteristics

								Category	Specifications
<test engine="" specifications=""></test>		<test &="" dynamometer="" engine=""></test>		<scr &<="" th=""><th colspan="3"><scr &="" aoc=""></scr></th><th>Measuring principle</th><th>Quantum Cascade Laser Infrared(QCL-IR) S pectroscopy</th></scr>	<scr &="" aoc=""></scr>			Measuring principle	Quantum Cascade Laser Infrared(QCL-IR) S pectroscopy
Item	Specifications		The second second	Category	Specifications	Category	Specifications	Measuring components	NO, NO2, N2O, NH3
Туре	4 Cycle, In-line 5			Substrate	Cordierite	Substrate	Cordierite	Measuring range	NO : 0 - 5000 ppm
Aspiration	TCi			Catalyst	V-W / TiO2	Catalyst	Pt, Pd		NO2 : 0 - 2000 ppm
•				Cell density	400 cpsi	Cell density	400 cpsi		N ₂ O : 0 - 2000 ppm
Displacement volume (cc)	2696	2 7 1		Diameter	6.77 inch	Diameter	6.77 inch		NH3 : 0 - 2000 ppm
Bore × Stroke (mm)	86.2 × 92.4	Exhaust gas	R	Length	10 inch	Length	2 inch	Sampling rate	10 Hz
Compression ratio	17.5	Upstream of DPF control valve		 Urea 	Injection 8	Control	System>	Flow rate	8 L/min
Max. Power (PS)	191/4,000 rpm	Sampling point	Mixer Downstream of DR		injection o		1,000	3,000	
Max. Torque (N. m)	410/3,000 rpm		DOC DPF	Upa tank ik p			1 2,500 1 2,000	29 32 5x - 16 301 x ² + 0.3990 20 2,000	y = 324.44e + 6.3493 8 ⁺ = 0.9999
Emission regulation	Euro 2						AU 1,500	4 1,500 1000	
After-treatment system	DOC		Temp. sensor & Pressure sensor & Pressure sensor			Oscilloscope, DAQ	500 Cee	Lea m	
Model year	2006	Mixer	Of Upstream Of Downstrea			- 6	0 20 40	60 80 100 tor duty, %	0 2 4 6 8 10 12 14 16 18 20 22 Dosing pump frequency, Hz

Test results & Conclusion

- Achievement of Balance point temperature of DPF below 260°C
 Verification of availability as a natural regeneration DPF
 - Hereafter study : Continuous study to reduce precious catalyst loading by improving catalyst coating method and promoter
- 2) SCR characteristics at constant speed operation
 - Reduction characteristics by ANR, NH3 storage-release characteristics
 - Hereafter study : Minimization of NH3 slip during transient operation

ion of urea consumption with high NOx reduction

Acknowledgement) This research was supported by the CEFV(Center for Environmentally Friendly Vehicle) as Global-Top Project of KMOE(Ministry of Environment, Korea).

NH3 storage With NH3 dip

