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I. Introduction

• 2 Euro 5 heavy-duty diesel vehicles equipped with Selective Catalytic Reduction (SCR) but without 

DPF [3].

• 1 Hz measurements of particles size distribution from a Cambustion DMS500

• 1 Hz On-Board Diagnostics (OBD) data, including vehicle speed, engine torque, engine speed and 

engine load are used as an input to the ANN

• Various operating conditions (steady-state and transient) are covered.

• Diesel exhaust particulate matter (PM) is composed of a solid carbon fraction (soot) and a 

soluble organic fraction (SOF).

• PM (mainly composed of soot) has a mutagenic action associated with adverse health and 

environment effects including lung cancers, asthma and increased mortality rate [1].

• Increasing concerns about these effects lead to stringent new emissions standards (from 0.14 

g/km for Euro 1 to 0.005 g/km for Euro 6) which motivated the development of PM control 

technologies such as a diesel oxidation catalyst (DOC) in combination with a diesel particulate 

filter (DPF). 

• Real-time modelling of soot emissions is an interesting way to estimate the efficiency of PM 

control technologies.

• Soot formation is an highly complex process, difficult to describe mathematically. Empirical and 

semi-empirical models are easier to implement but are generally limited to specific operating 

conditions and are not able to generalize accurately [2].

1. Data description
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III. Results and discussion

The IPDS method is sensitive to the effective 

density. FA-method gives close estimations.

.

Table 1: Estimation of emissions using the IPSD method with two effective density 

estimation, the FA-method and the weigh of the filters.

SUMMARY

• Inputs = vehicle speed, engine torque, engine speed and engine load 

• Output = Geometric Mean Diameter (GMD), Geometric Standard Deviation (GSD) and 

particles total number (PN) every second

• GMD, GSD and PN are used to compute the soot’s using the FA-method.

Fig.  6: PN, GMD and GSD prediction using 

an LSTM model

Cumulative PM

Real 0.030 g/km

Prediction 0.029 g/km

IPSD method FA method
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Effective 

density
𝜌eff, 1 = 𝜌0 ∙ (

𝐷p

𝐷pp
)𝐷m−3[3]

𝜌eff, 2 = 0.0758 ∙ 𝐷p
𝐷fm−3 [5]

𝜌eff, 3 = 1.2378 ∙ 𝑒−0.0048 ∙ 𝐷p [6]

𝐷α = 1.069
𝑘α = 0.998
𝐷TEM = 0.29

𝑘TEM = 2.644 ∙ 10−6

𝜑 = 3𝐷TEM + 1 − 𝐷TEM ∙ 2𝐷α [4]

Variables Particle effective diameter (𝐷p), 

number of particles scanned per 

channel (𝑛i)

Geometric Mean Diameter (GMD), 

Geometric Standard Deviation (GSD), total 

particles number (N)

• Soot mass is computed using the Integrated Particles Size Distribution (IPSD) Method and the 

Particle Number Mass Emission (FA method, see poster 22) [4]. Both methods are compared.

Fig 1: Image of the tested DAF truck, from [3] Fig 2: Vehicle Speed and particle size distribution as a function 

of time, from [3]

• This poster has two objectives:

1. Compare two different methodologies to compute mass

2. Use neural networks to predict Geometric Mean Diameter (GMD), Geometric Standard Deviation 

(GSD) and total number (N) which will be used to predict mass.

II. Material and methods

2. Mass computation

3. Implementation of an LSTM neural network

Fig 3. : Distance specific particle size distribution over the combined 

FIGE cycle 

• The truck was tested against a FIGE cycle, including a 

city, a rural and a motorway part defined by average 

speed of respectively 50, 72 and 88 km/h

IPDS - 𝜌1 IPDS - 𝜌2 IPDS - 𝜌3 FA - method

0.025 g/km 0.033 g/km 0.042 g/km 0.031 g/km

Fig 5. : IPSD mass estimation versus FA method mass estimation 

1. Mass computation comparison

Fig. 7: Soot mass estimation from GMD, GSD and PN 

using the FA-method

Cumulative PN

Real 2.12 ∙ 1015 km−1

Prediction 2.04 ∙ 1015 km−1
-3.8 %

-2.0 %

• Peaks are not correctly predicted. An improvement 

of the prediction of N, GMD and GSD should allow 

to predict more accurately the peaks.

• Final soot emission estimate close to reality.

Fig 4: Schema of an LSTM, x(t) represent the input at time t, h(t-1) the prediction at 

time t-1, h(t) the prediction at time t, f the forget gate at time t, i the input gate at 

time t, o the output gate at time t and C(t) the cell state at time t. Adapted from [8].

• Long Short-Term Memory (LSTM) neural networks are designed to model temporal sequences and 

their long-range dependencies [7].

• Each node (memory cell) of the network is a complex unit able to memorize information for an 

extended number of time step.

• 3 logistic gates control the storage and the update of the cell state.

• During the training procedure, the final error between the true output and predicted output is 

computed, propagated backward and the weights and biases are adapted to minimize the error.

• Trained for 76 epochs, until the error on the testing set (20% of input data) stops improving. 

2. LSTM modelling

• The trends in GMD, GSD and N are well 

predicted (especially during the motorway 

part of the FIGE cycle) although the peaks 

are globally under predicted.

• Transient regime with short peaks that are 

difficult to predict.

• The input data is not sufficient to capture the 

highly complex and transient soot formation 

and therefore to accurately capture the 

peaks.

3. Predicted soot loading
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