
22nd ETH Conference on Combustion Generated NanoParticles

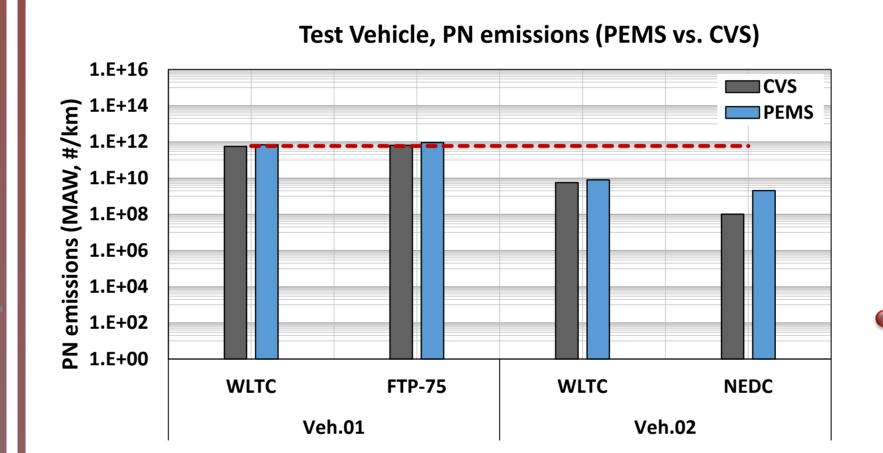
Characteristics of PN Emission Regarding to Cold start and Hot start on Real Driving Emissions

Dong In Lee¹, Young Soo Yu¹, Junepyo Cha¹, Mun Soo Chon¹* ^{1*}Department of Automotive Engineering, Korea National University of Transportation, Korea

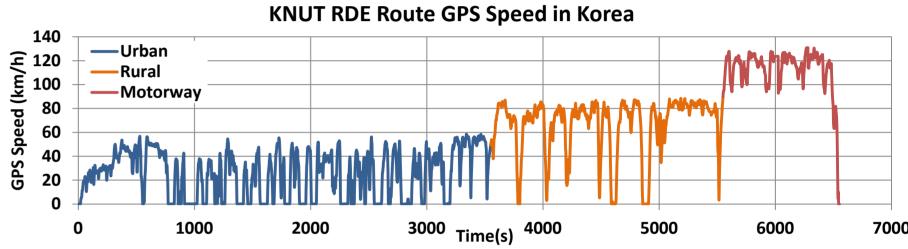
(*Corresponding author, e-mail: <u>mschon@ut.ac.kr</u>, Tel: +82-43-841-5292)

- since 2000. Euro3 to Euro6 has been enhanced by about 84%. However, actual road NOx emissions were reduced by about 40% compared to Euro 3.
- Compared with the current certification mode WLTC and NEDC, most vehicles(Euro 6b) meet emissions regulations in NEDC mode, but do not meet emissions regulations in various speed range WLTC modes.
- Characteristics of High NOx emissions appear in the low speed phase including cold start and high speed phase including high load operation.
- The one of reason for this phenomenon is that the emissions from certification test mode did not reflect the characteristics of the real driving emissions.
- EU and Korea, which have implemented Euro 6d Temp. regulations(incl. WLTC and RDE), have strengthened cold start conditions and PN regulations in the RDE 3rd package since September 2017.

Pollutant	Euro 5 Light-Duty		Euro 6 Light-Duty		
	Gasoline	Diesel	Gasoline	Diesel	
CO (g/km)	1.0	0.5	1.0	0.5	
NOx (g/km)	0.06	0.18	0.06	0.08	
PN (#/km)	-	6.0 x 10 ¹¹	6.0 x 10 ¹¹	6.0 x 10 ¹¹	


In this study, PN emission characteristics from light-duty diesel vehicle and gasoline vehicles were evaluated under "cold start"

						ileat.	vveign
Veh.1	GDI 14	2,359cc	139.84kW	24.6kg∙m	Gasoline	тwс	1,701k
Veh.2	CRDI 14	1,995cc	134.69kW	41kg∙m	Diesel	LNT+DPF	1,930k


Test Equipment (PEMS)

Item	Principle	Range
СО	Heated NDIR (Non-Dispersive	0 ~ 5 vol. %
CO ₂	Infrared Detection)	0 ~ 20 vol. %
NO, NO2	UV (Ultra-Violet)	0 \sim 5,000 ppm
	0v (0111a-v101et)	0 ~ 2,500 ppm
PN	DC (Diffusion Charger)	Approx. 0.5 [L/min]
Exhaust flow	Pitot flow meter	100 ℃∶18~810 kg/h
	Pilot now meter	400℃:23~610 kg/h
Standard Signal Measurements	Exhaust temperature, Exhaust pres Atmospheric temperature, Atmosph Speed	· · · ·

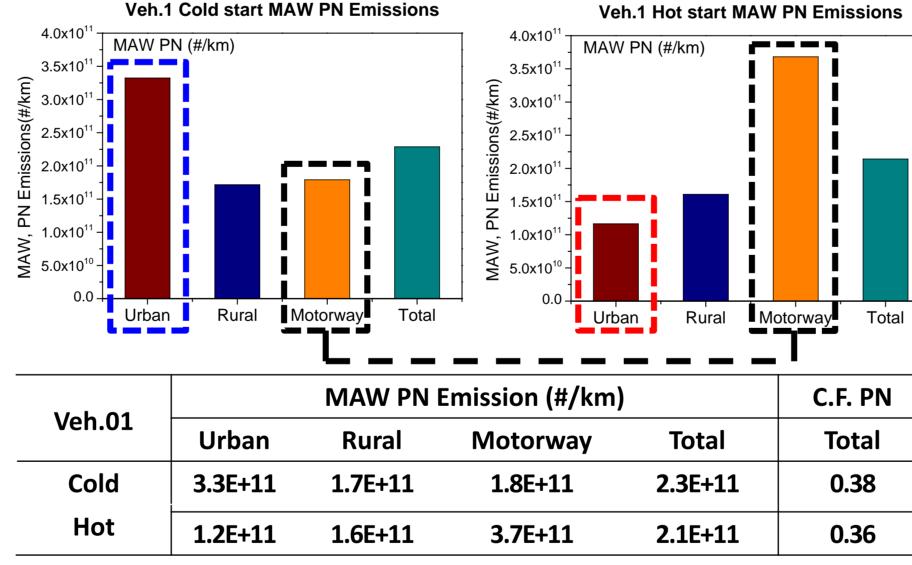
Correlation test (CVS vs. PEMS)

	Urban	Rural	Motorway	Total
• Trip distance(km)	22.5	21.1	28.6	74.9
• Trip duration(min.)	59.5	19.8	17.25	96.5
• Avg. vehicle speed(km/h)	23.2	64.1	99.8	-

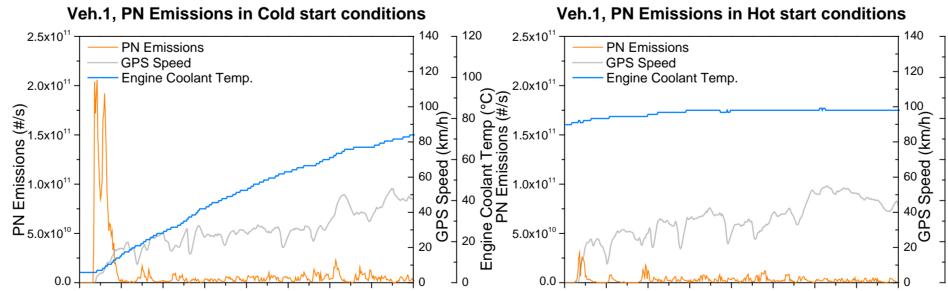
		CVS	PEMS	Diff. %	Diff. abs
Veh.01	WLTC	5.62E+11	6.92E+11	18.8%	1.30E+11
	FTP-75	6.51E+11	9.20E+11	29.2%	2.69E+11
Veh.02	WLTC	5.61E+09	8.05E+09	30.3%	2.44E+09

conditions with RDE 3rd package

Test Result and Conclusions

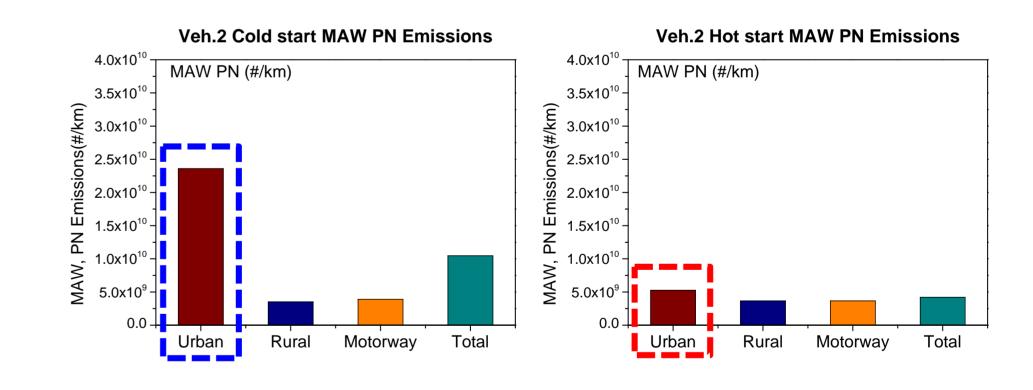

As a result of PN correlation test

Vehicle 1 showed a tendency to satisfy the PEMS error range of 50% with CVS equipment. Vehicle 2 showed a tendency that the absolute error of CVS equipment and PEMS satisfied 1×10^{11} and below.

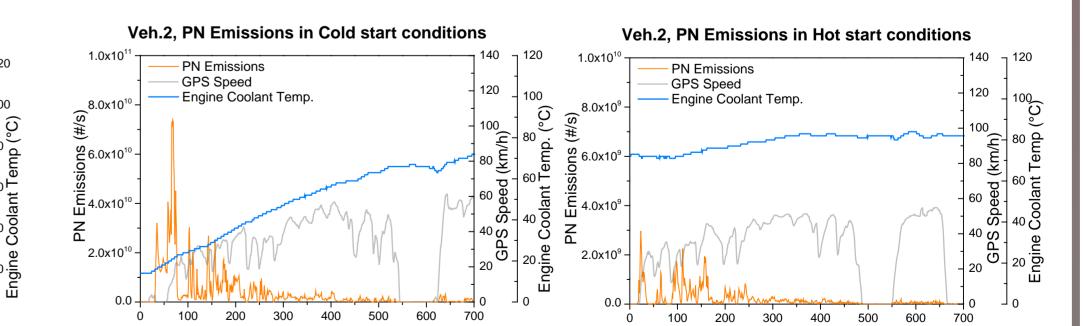

As a result of MAW

- Vehicle 1 satisfied the regulation of 2.3 × 10¹¹ in the cold start condition and 2.1 × 10¹¹ in the hot start condition. However, emissions characteristics are the same order as PN regulation
 (6 × 10¹¹).
- Vehicles 2 satisfied the regulation of 1.1×10^{10} in the cold start condition and 4.2×10^{9} in the hot start condition. Vehicle 2 has less PN emission characteristics than Vehicle 1.
- As a result of comparing the Cold start condition and the Hot start condition based on the coolant temperature of 70°C
 - For Veh.1(GDI), the PN emission is about 30% of the urban part and about 17% of the total trip in the cold start condition.
 - For Veh.2(light-duty diesel veh.), the PN emission is about 93% of the urban part and about 86% of the total trip in the cold start condition.
 Compared with Veh.1, Veh.2 has a more sensitive PN emission characteristic in cold start condition
- PN emissions characteristics by Vehicle
 - Veh.1 shows high PN emission characteristics under cold start and high load operating (high RPM and acceleration) conditions.
 - Veh.2 shows high PN emission characteristics. under low-temperature cold start conditions where the engine is not sufficiently warm-up
 Veh. 2 controls PN emissions in the DPF after-treatment system, so PN emissions are relatively low compared to Veh.1(GDI).

MAW Result



Real-Time Result



NEDC 1.02E+08 2.05E+09 95.0% 1.95E+09

Currently, the PN correlation test between CVS and PEMS equipment shall be such that the error of the measured value is less than 50% or the absolute value is less than 1E + 11.

Veh.02		C.F. PN			
	Urban	Rural	Motorway	Total	Total
Cold	2.4E+10	3.5E+9	3.9E+9	1.1E+10	0.02
Hot	5.3E+9	3.7E+9	3.7E+9	4.2E+9	0.01

Urban Rural Motorway Total

1.2E+11 **2.7E+12**

5.9E+10 **4.1E+11**

2.5E+12 1.0E+11

2.5E+11 1.1E+11

PN emission characteristics of Veh.2

Time (s)

by 687s / by 687s /

Total

86%

33%

Urban

93%

54%

Time (s)

Coolant Temp.

2.3E+12

1.4E+11

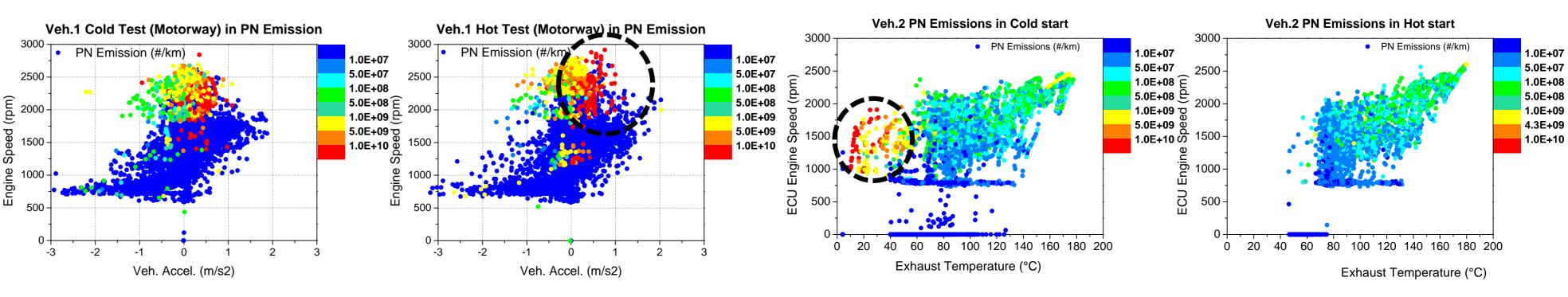
PN (#) _{by 70°}C (687s)

Vehicle.2

Cold

Hot

Conclusions


- PN emissions of total are higher for gasoline vehicles(GDI) than for DPF-equipped diesel vehicles.
- The effects of cold start conditions during the total test are significant both in diesel and gasoline vehicles.
- High PN emission characteristics are shown in high acceleration and high RPM region.

※ Corresponding author : Mun Soo Chon, Ph.D E-mail : mschon@ut.ac.kr Professor, Department of Automotive engineering @Korea National University of Transportation(KNUT)

※ Acknowledgments This research was supported by the National Institute Environmental Research (NIER-SP2017-215).

						200 250 300 ne (s)	350 400
PN (#)	Coolant Temp. by 70°C (388s)	Urban	Rural	Motorway	Total	by 388s Urban	/ by 388s / Total
Cold	3.9E+12	1.3E+13	4.8E+12	4.7E+12	2.3E+13	29%	17%
Hot	1.2E+12	4.6E+12	6.3E+12	8.6E+12	2.0E+13	25%	6%

PN emission characteristics of Veh.1

AVL 🗞