Coherent Metrics for Toxic Air Contaminants are needed to link Vehicle Emissions, Air Quality Criteria and MAK thresholds

Andreas Mayer, Jan Czerwinski, Max Wyser, Norbert Heeb

Do you believe in progress over the past 250 years?

1775 Sir Percival Pott detected a correlation between cancer and soot. WHO surprisingly enough confirmed this in 2012 Before the French Revolution 1789 French people used 700 different units for mass, length and volumes and the fact, that king Louis XVI could not guarantee the correct mass of bread started the disaster and he got killed – justice and equality regained! The "m" and "kg" were created but for Toxic Particles we still use non-coherent PM10, PM2.5, PN23, PN10, EC, BC, LDSA, BS ⁽²⁾ Where is the Guillotine? ⁽³⁾

Engineers can Improve, but they need to know what

Ambient air in urban environments is overloaded with all kind of particles and other toxic substance: natural and manmade, solid and volatile, soluble and insoluble, some are ultrafine and some – by far not all - are highly toxic. We have to discriminate, detect the sources of the most dangerous ones and eliminate them by setting the correct metrics, monitor correctly and use best available technology for mitigation measures

Engine Emission Definition has made Progress: as soon as health research has concluded that particle size is very important for lung uptake and organ translocation and has pinpointed engine emitted particles to be nano-size, rather insoluble, coated with PAH and metals thus "carcinogenic class 1" we realized that we needed a more sensitive metric for vehicle homologation and control of modern engines and this step is surprisingly enough successfully completed with Euro VI in Europe, not in the US \rightarrow how to compare engine emission quality between Europe and the US? Further confusion prevails with NOx or NO₂, PAH or THC, metal oxides, secondary toxics and, short living global warming substances.

Public Health however seems to live on a different planet: for ambient air quality we use outdated definitions like PM10 and PM2.5, which are neither taking into account the importance of particle size nor the fact of different toxicity of contained substances nor are they compatible to particle emission of traffic sources. So we are not able to conclude on air quality from emission data and thus cannot support and justify specific mitigation measures. The same with gases where we limit NO₂, which is not even measured at the tailpipe, with hydrocarbons THC and substances classified as carcinogens like Dioxins, Furans, PAH and Nitro PAH.

This anachronistic discrepancies are not only misleading the health effect research but also policy makers and the industry while epidemiologic studies continue to correlate PM with health endpoints and these studies are regarded to be sacrosanct by existence.

A few examples for PM definitions actually in force

Metric	Defined by	Defined by	Defined by	Toxicity	Dose/Effect	Limit values
Wethc	physical	chemical	physiological	Equivalent	DOSE/Effect	Based on what
	criteria	criteria	criteria	TEQ	linear from zero?	Dased on what
	size? shape?	substance?	residence time?	inflammatory?	pro- or degressive?	
	phase, surface?	solubility?	dilution?	mutagenic?	safe threshold?	
	morphology?	reactivity?	metabolism?	carcinogenic?	no no-effect level?	
PM-Tailpipe	Filtration below	N/D	N/D	carcinogen	not possible with	Euro VI: 10 mg/kWh
	325 °K	not defined		WHO 2012	undefined substance	based on detection limit
PM-CVS	Filtration below	N/D	N/D	carcinogen	not possible with	Euro 6: 4.5 mg/kWh
	325 °K			WHO 2012	undefined substance	based on detection limit
PM stationary	Hot exhaust	N/D	N/D	ND	not possible with	LRV 2018: 10 mg/m ³
Switzerland	"Staub"				undefined substance	based on detection limit
PM10	Size < 10 µm	N/D	upper airways		see six cities study	CH 20 µg/m ³
			deposition		but substance undef	EU: 40 µg/m ³
PM2.5	Size < 2.5 µm	N/D	upper airways	N/D	see six cities study	WHO: 10 µg/m ³
			deposition		but substance undef	
PN23	size 23-2500 nm	solid < 300°C	lung membrane	N/D	not possible with	Euro VI: 6 x 10 ¹¹ P/kWh
			penetration		undefined substance	Euro 6: 6 x 10 ¹¹ P/km
PN10	size 10-2500 nm	solid < 300°C	lung membrane	N/D	not possible with	TBD for DI
			penetration		undefined substance	petrol engines by EU
PN ambient	N/D yet	N/D yet	lung membrane	N/D	not possible with	N/D
	but could be	but could be	penetration		undefined substance	
EC	N/D	not evaporate.	N/D	carcinogen	0.01 µg/m³ lifelong→	SUVA / CH: 100 µg/m ³
		< 500°C		WHO 2012	4 cancer cases per	EU proposed: 50 µg/m ³
		"C" identified			100'000 exposed	based on old technology
OC	N/D	evaporated	N/D	N/D	not possible with	N/D
		< 500°C ; "C"			undefined substance	
		content ident.				

Undefined metrics and substance mixtures of unknown and ever changing compositions should not be used \rightarrow PM= salt, sand or soot? neither should "indicating metrics" be used for phenomena they are not intrinsically connected with \rightarrow NO₂ indicating ultrafine particles?

Discrepancies between traffic Emissions and Environmental Pollution Criteria

PM as measured at the vehicle tailpipe acc. to type approval regulations is not at all coherent with PM10 or PM2.5 as measured in ambient air. Some substances might be in both samples but in undefined compositions. Calculate PM10 (or PM2.5) bottom-up from PM type approval data (even during real world driving) is scientifically not permitted. Errors possible up to one order of magnitude. For PN as measured at the vehicle tailpipe the same is true

NOx as measured at the vehicle tailpipe is not defined for the ration of NO/NO₂ and can therefore not be used for ambient near traffic pollution by NO₂. Errors possible up to factor 5

THC as measured at the vehicle tailpipe is not defined and therefore not applicable to single HC-species judgements

Proposal as a first, immediately possible improvement to get better information on exhaust toxicity and justify mitigation measures - measure and limit PN solid 10-500 nm in ambient air

measure and limit EC in ambient air as well as at the tailpipe

- measure and limit NO2 at the tailpipe

- measure and limit the most carcinogenic PAH at the tailpipe