

PAUL SCHERRER INSTITUT

Biomass Burning Dominates Brown Carbon Absorption in Switzerland

V. Moschos,^{1,2} N.K. Kumar,¹ K.R. Daellenbach,^{1,3} U. Baltensperger,¹ A.S.H. Prévôt,¹ and I. El Haddad¹

¹ Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, CH-5232 Villigen-PSI, Switzerland ² ETH Zurich, Department of Mechanical and Process Engineering, CH-8092 Zurich, Switzerland ³ University of Helsinki, Institute for Atmospheric and Earth System Research, FI-00014 Helsinki, Finland vaios.moschos@psi.ch, vmoschos@student.ethz.ch

Introduction

The optical properties and sources of atmospheric aerosols are of prime importance in the context of a changing climate.^[1] Organic aerosol (OA) emissions consist of light-absorbing compounds (brown carbon, BrC) that may exert, along with soot carbon, a significant positive direct radiative forcing on the climate system.^[2] Current ambient studies of BrC are limited to correlations of the measured absorption with seasonal patterns or marker species specific to certain sources and/or processes (factors).^[3] Here, we combine long-term aerosol mass spectrometry (AMS) and ultraviolet-visible (UV-vis) spectroscopy measurements within a positive matrix factorization (PMF) model, to determine factor-specific BrC absorption properties (e.g., mass absorption efficiency, MAE) for a case study in Switzerland.

Methodology

Bulk absorption and OA sources

wood burning

Concentration $(\mu g m^{-3})$, Factor k

Source apportionment of BrC absorption

[13] Dinar F. et al. (2008) Farraday Discuss 137.279

[13] Dinar E, et al. (2000) Furnaday Discuss. 197.279. [14] Lin P, et al. (2015) <i>PCCP</i> 17:23312. [15] Xie M, et al. (2017) <i>EST</i> 51:11607.	Indication of the negligible contribution of BBOA alone cannot explain SCOA, found in the coarse mode, to b _{abs,370} . the variability in the b _{abs,370} .	460 470 42	WOOA
Acknowledgements	Conclusions	80 10 10 10 10 10 10 10 10 10 1	
Onassis Foundation	 Novel framework that provides a direct link between chemical composition and absorptivity for individual OA classes. 	Wavelength (nm) 00 380 360 340 3	
Swiss Confederation	 Long-term predominance of anthropogenic over biogenic emissions in the water-soluble BrC absorption in Switzerland. Importance of BrC versus soot carbon absorption should be 	4 65 6 4 66 6 4 6	SOOA
Federal Office for the Environment FOEN	examined to deepen our understanding of their climate effects.	Relative factor contributions t and Zurich during 2013. calcu	o bulk BrC b _{abs} in Magadino lated by post-PMF analysis.