
Development of Emission Factors of Nanoparticles (PM_{0.1}) from Solid Biomass Combustion

Hisam Samae¹, <u>Worradorn Phairuang</u>^{2*}, Surajit Tekasakul¹, Perapong Tekasakul³, Masami Furuuchi⁴ ¹Department of Chemistry, Faculty of Science, Prince of Songkla University, Thailand ²Faculty of Environmental Management, Prince of Songkla University, Thailand ³Department of Mechanical Engineering, Faculty of Engineering, Prince of Songkla University, Thailand ⁴School of Environmental Design, College of Science and Engineering, Kanazawa University, Japan

INTRODUCTION

- The direct combustion of biomass fuel dominates the utilization of biomass fuels and is most important.
- However, it produces many air pollutants such as CO₂, SO₂ NO_x, particulate carbons and other pollutants. Particularly, much of ultra to nanoparticle are generated as reported elsewhere.
- Knowledge about characteristics and the control of pollutant emission is vital to biomass utilization with the minimum environmental load.

RESULTS AND DISCUSSION

- > The $PM_{0.1}$, or nanoparticle emission inventory from solid biomass burning have not been study so far in Thailand and Asian countries.
- The lack of data both of activity level and corresponding Emission Factors (EFs) would lead to large uncertainty inventory.
- Therefore, the result of EFs evaluation of solid biomass fuel will be important to develop high quality emission inventory.

METHODOLOGY

Solid biomass fuel 6 types including; Palm Kernel Rice Straw Sugarcane Leave Corn stem Bagasse Rubber Wood

Fig 1. Para-rubber fuelwood in agroindustry, Thailand

Air Sampler as a common tool for the evaluation EFs

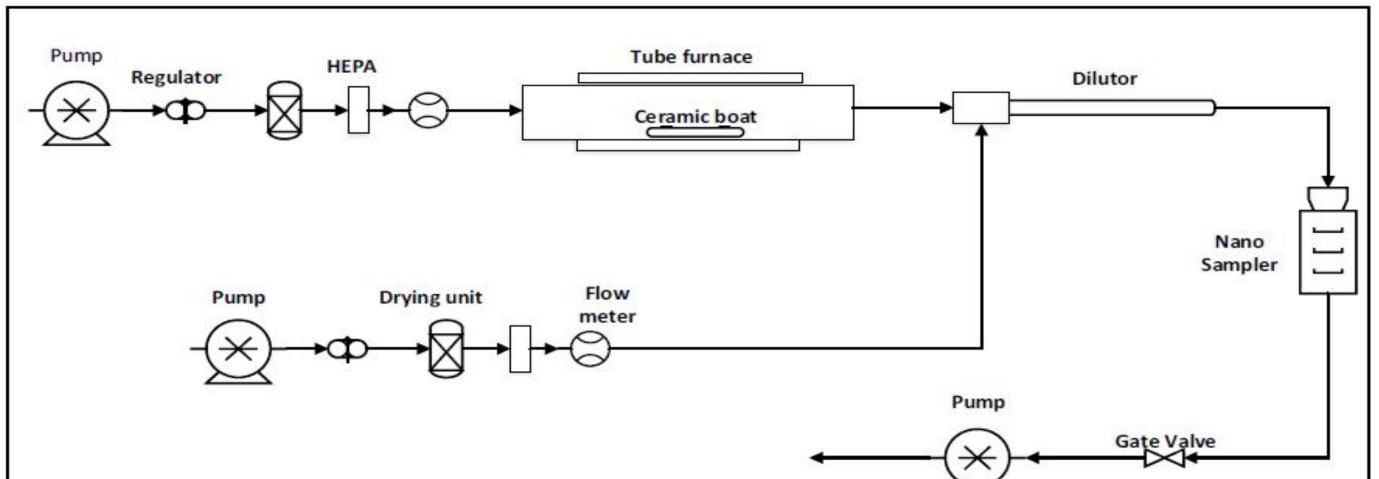
Sampler: The sampler consists of four impactors stages (> 10, 2.5 - 10, 1 - 2.5, 0.5 - 1 μm) as well as an inertial filter stage (0.1 - 0.5 μm) and a backup filter (< 0.1 μm) (See Fig 2.) (Furuuchi et al., 2010)
Filter: A quartz fibrous filters 55 mm (Pallflex 2500 QAT-UP)

Fig 4. Size Distribution of Solid Biomass Combustion

- The size distributions of the smoke particles indicates a single-mode behavior.
- > They contained major particles in an accumulation mode (0.1 μ m < particle size < 2.5 μ m)
- The results display that the combustion of solid biomass emits a large fraction of fine particles.
- Around 20% of the six types of the smoke particles has a mass that fell within a range of < 100 nm.</p>

Table 1. Measured PM_{0.1} Emission Factors (g.kg⁻¹) for Solid Biomass

Biomass type


Excess air Heating rate Maximum

- Flow rate: 40L/min.

Fig 2. PM_{0.1} sampler

Combustion Experiment

- The solid biomass burned in a horizontal tube furnace with an inserted quartz column.
- Dry clean air approximately 1.6 L/min is purged into the furnace to combust the solid biomass sample.
- In order to reduce the temperature and moisture content, the exhaust was diluted with a dilutor (OD = 35 mm and L = 800 mm) include a mixing tube (L = 70 mm) by the dry clean air

	Biomass type	(Lmin ⁻¹) *	(°Cmin⁻¹)	temperature(°C)	Factors (g/kg)
	Palm Kernel	0.25	5	575	0.17
	Rice Straw	0.16	5	575	0.11
	Sugarcane leave	0.15	5	575	0.11
	Corn stem	0.16	5	575	0.14
	Bagasse	0.14	5	575	0.22
	Rubber wood	0.13	5	575	0.15
	$*_{0} = 1200/5$				

*excess 130% air

PM_{0.1} Emission

- The Emission Factors (EFs) values for six types of solid biomass burning in the laboratory experiment range from 0.11 to 0.22 g/kg.
- The highest EFs come from Bagasse (0.22 g/kg), the minimum EFs derive from rice straw and sugarcane leave (0.11 g/kg).
- The EFs are important for the development of strategies for pollution control and decrease the biomass burning.
- \succ EFs of PM_{0.1} will be discussed in detail based also on other chemicals.

Acknowledgement

The authors thank to the budget revenue of Prince of Songkla University (ENV601601N). Moreover, corresponding author thanks to Thailand Research

 \searrow

Fig 3. Schematic diagram of combustion system

Emission Factors (EFs) Calculation

Emission factors (EFs) of $PM_{0.1}$ from the burning experiment will calculate based on the flow rate of the Nano-sampler and particulate matter concentrations using Equation [1] (Kim Oanh et al., 2011).

 [1] EF = Concentration (mg*m⁻³) * Flowrate m³h⁻¹ * Sampling time (h) biomass burned (kg) Fund for new scholar (MRG6180077) as well as Research Fund for DPST Graduate with First Placement.

References

[1] Furuuchi, M., Eryu, K., Nagura, M., Hata, M., Kato, T., Tajima, N., et al., (2010). Development and performance evaluation of air sampler with inertial filter for nanoparticle sampling. *Aerosol Air Qual. Res, 10,* 185-192.
[2] Kim Oanh, N. T., Ly, B. T., Tipayarom, D., Manandhar, B. R., Prapat, P., Simpson, C. D., & Liu, L. J. S. (2011). Characterization of particulate matter emission from open burning of

rice straw. Atmospheric Environment, 45(2), 493-502.

Correspondence Address: Dr.Worradorn Phairuang, Faculty of Environmental Management, Prince of Songkla University, Thailand E-mail; worradorn.p@psu.ac.th