

Wir schaffen Wissen – heute für morgen

Mitigation of secondary organic aerosol formation from wood burning emissions by catalytic removal of aromatic hydrocarbons

Simone M. Pieber^{1,2}, Anastasios Kambolis¹, Davide Ferri¹, Deepika Bhattu¹, Emily A. Bruns¹, Martin Elsener¹, Oliver Kröcher^{1,3}, André S.H. Prévôt¹, Urs Baltensperger¹

¹PSI/Switzerland, ²now at Empa/Switzerland, ³EPFL/Switzerland (e-mail: <u>simone.pieber@psi.ch</u>)

MOTIVATION METHODS RESULTS CONCLUSIONS	
--	--

Residential logwood burning emits

- harmful volatile organic compounds (VOC)
- toxic carbon monoxide (CO)
- greenhouse gases (CH₄, CO₂)
- > fine particulate matter (PM) with complex, adverse effects
- emissions form secondary organic aerosol (SOA)

Average organic PM components in Winter from various sites in central Europe

(Lanz et al., ACP., 2010)

Coated monolith in quartz glass reactor:

Pt/Al₂O₃
Pt/CeO₂-Al₂O₃

SET-UP (2)

Coated monolith

 Al_2O_3

- ✓ good mechanical properties
- ✓ high surface area porosity
- ✓ water resistant
- Pt
- ✓ high activity for CO and NMHC oxidation
- ✓ fair stability against poisoning
- \checkmark H₂PtCl₆ left overs may prevent poisoning by inorganics

CeO₂

- ✓ high oxygen storage capacity (OSC)
- ✓ improves dispersion of supported metal: smaller metal clusters, more active centers in metal-support interface
- ✓ enhances catalyst's thermal stability

SET-UP (3)

Proton Transfer Reaction Mass Spectrometry (PTR-MS)

Jordan et al., 2011

Gas phase organic compounds Proton affinitiy higher than water (good for aromatics, limited for alkanes) Soft ionization, molecular information retained

Aerosol Mass Spectrometry (AMS)

Canagaratna et al., 2007 **Particulate**, sub-mircon, non-refractory PM Total mass information Speciation: NO₃, NH₄, SO₄, Chl, OA Bulk properties of OA O:C, H:C, etc., mass spectra

 $R + H_3O^+ \rightarrow RH^+ + H_2O$

CO, NMHC & METHANE

SOA REDUCTION VS. NMHC

Significant reduction of SOA at realistic chimney temperatures (185-310°C)

> SOA reduction exceeds «FID-based NMHC» reduction by far

в Л	OT	11//	TIO	NI.
Ινι	υı	IVA	ПU	IN

RESULTS

CONCLUSIONS

VOC SPECIATION

	10-			
	1.0		2,6-dimetnoxypnenol	
			furan	
			2-methylprop-2-enal/(2E)-2-hutenal	
			4-(2-hydroxyethyl)phenol/2-methoxy-4-methylphenol	
			prop-2-enal	
	<u> </u>		1,2-dimethylnaphthalene	
	0.0		acenaphthylene	
		1	methylfuran	
ō			xylene	
Ē			2-methoxyphenol	2
Ē			benzenediol	2
contrib	06		dimethylfuran	
	0.0		2,4-/2,6-/3,5-dimethylphenol ("xylenol")	
			1-/2-metnyinaphtnaiene	
			bonzaldohydo	
			stvrene	
U			methylphenol ("cresol")	
Ð	0.4 -	1	benzene	
.2		1	phenol	
lt			naphthalene	dim
0				
Ð				1.0
ſ				1,2-0
	• •		44-234 ppmC benzene	
	0.2 -	-	······	
			6-19 nnmC nhenol	
			o zo ppine pricioi	
			8-10 nnmC nanhthalana	4-(2
			o-to ppine napitualene	2-m
	^ ^			
	U.U –			

structural	class	m/7	protonated	$k_{\rm H30}^{+}$	k _{OH}	feed composition				
assignment ^{2, 3}			ion	see ^{a)}	see b)		(mean±1SD), ppmC			
0						E5	E3	E7	E8	E9
						(E6*)	(E4*)			(E10*)
						n=2	n=2	n=4	<i>n</i> =2	n=2
benzene	mono-c.	79	$[C_6H_6+H]^+$	1.93	1.22	56	109	178	44	234
						± 1	±2	± 5	± 7	±9
naphthalene	PAH	129	$[C_{10}H_8+H]^+$	2.45	23	11	21	29	8.1	40
			+			±0	±1	±4	±1.0	±4
phenol	phOH	95	$[C_6H_6O+H]$	2.13	28	9.1	13	17	6.4	19
tabiana		02		2.08	5.62	±0.6	±0 7.6	±1 11	±0.7	±1 10
toluene	mono-c.	93	[C7n ₈ +n]	2.08	5.05	+0.4	+0.2	+1	+0.4	+0
styrene	vinvlic	105	[C ₀ H ₀ +H] ⁺	2.27	28	1.9	3.5	4.9	1.4	3.6
styrene	villyne	105	[0818 11]	2.27	20	±0.2	±0.1	±0.4	±0.2	±0.4
prop-2-enal	non-	57	$[C_{3}H_{4}O+H]^{+}$	3.43	20	2.7	3.2	4.0	1.2	3.5
	ArHC					±0.2	± 0.1	± 0.2	± 0.1	± 0.1
benzaldehyde	ox. ArHC	107	$[C_7H_6O+H]^+$	3.63	40	1.9	3.6	3.4	1.0	4.1
						±0.2	±0.1	±0.2	±0.1	±0.1
methylphenol	phOH	109	$[C_7H_8O+H]^+$	2.27	34-48	2.0	2.5	2.9	1.3	2.5
(o-/m-/p-cresol)			to the state			±0.3	±0.1	±0.2	±0.2	±0.2
2-/3-methylfuran	furan	83	$[C_5H_6O+H]$	2	62-73	1.1	0.9	1.0	0.5	0.8
aconomisticulana	DAU	152	$[C \ H + H]^+$	286	100 120	±0.1	±0.0	±0.1	±0.1	±0.1
acenaphurylene	FAII	155	[C12118+11]	2.80	100-120	+0.3	+0.3	+0.5	+0.2	+0.6
2-methylprop-2-enal/	non-	71	$[C_4H_4O+H]^+$	3 43	33-40	1.0	1.0	1.3	0.4	0.8
(2E)-2-butenal	ArHC	/1	[041160+11]	5.45	55-40	±0.1	±0.0	±0.1	±0.0	±0.1
o-/m-/p-xylene,	mono-c.	107	$[C_8H_{10}+H]^+$	2.26	7-23	1.0	1.5	1.0	0.3	0.7
ethylbenzene						±0.1	± 0.1	± 0.1	± 0.0	± 0.0
1-/2-methyl-	PAH	143	$[C_{11}H_{10}+H]^+$	2.71	52	0.7	1.1	1.2	0.4	0.9
naphthalene						±0.1	± 0.1	±0.3	± 0.0	±0.3
furan	furan	69	$[C_4H_4O+H]^+$	1.69	40	0.8	0.7	1.2	0.4	0.6
2.4. (2.5. dimentional			to the state			±0.1	±0.0	±0.2	± 0.0	±0.1
2,4-/2,5-dimethyl-	furan	97	$[C_6H_8O+H]^2$	2	87-130	0.9	0.0	0.8	0.5	0.4
2 4-/2 6-/3 5-	#hOII	122		2	80.01	±0.1	±0.0	±0.1	±0.0	± 0.0
dimethylphenol (xylenol)	рион	125	[C8H10O+H]	2	80-91	+0.1	+0.1	+0.1	+0.1	+0.1
benzenediol	nhOH	111	$[C_{4}H_{4}O_{2}+H]^{+}$	2	104	0.6	0.5	0.6	0.3	0.4
benzeneuror	phon	111	[0011002 11]	2	101	±0.1	± 0.0	±0.1	± 0.0	±0.1
1,2-dihydroacenaphthylene	PAH	155	$[C_{12}H_{10}+H]^+$	2.81	7-8	0.4	0.5	0.6	0.2	0.5
(1,1'-biphenyl)						± 0.1	± 0.0	± 0.2	± 0.1	±0.3
2-methoxyphenol	phOH	125	$[C_7H_8O_2+H]^+$	2	54-78	0.3	0.2	0.4	0.2	0.2
						±0.1	±0.0	±0.1	± 0.0	±0.0
1,2-dimethyl-	PAH	157	$[C_{12}H_{12}+H]^+$	2	77	0.2	0.2	0.1	0.0	0.1
naphthalene			+			±0.1	±0.0	±0.0	±0.0	±0.0
4-(2-hydroxyethyl)phenol/	phOH	139	$[C_8H_{10}O_2+H]$	2	75	0.1	0.1	0.2	0.1	0.1
2-methoxy-4-methylphenol	-hOU	155		2	75.01	±0.0	±0.0	±0.0	±0.0	±0.0
phenol	pnOH	155	$[C_8H_{10}O_3+H]$	2	/5-81	+0.0	+0.0	+0.1	+0.0	+0.0
Total SOA-22						97±5	173±1	261±4	71±10	324±1
•NMOC (PTR-ToF-MS)				-	-	179±15	265±1	381±28	110±14	404±7
NMHC (FID)				-	-	95	160	270	100	260
CO(Picarro)				-	0.15	450	700	1000	400	1100
$CH_{\ell}(FID)$				_	0.00635	85	120	100	75	220
				-	0.00035	05	150	190	15	220

SOA CONTRIBUTION

AROMATIC HC (SOA-PRECURSORS)

- Significant reduction of harmful aromatic hydrocarbons
- Discrimination between species dependent on their reactivity as measured by their k_{OH} (in cm³ molecule⁻¹ s⁻¹)

SOA REDUCTION VS. SOA-PRECURSOR (22)

RESULTS

Significant reduction of SOA at realistic chimney temperatures (185-310°C)

SOA reduction follows «SOA-22» precursor reduction

NMHC, SOA-22 AND SOA REDUCTION

Conclusions

- 1) Removal of toxic CO & harmful aromatics at relatively low temperatures
- 2) SOA formation significantly reduced, following the SOA-22 precursors
- 3) Reduction of methane at high temperatures; CeO₂ is effective
- 4) Low cost/impact-materials should be studied, as phenolic / naphthalenes appear easily convertable

Wir schaffen Wissen – heute für morgen

QUESTIONS?

Simone M. Pieber (simone.pieber@psi.ch)

<u>http://www.ccem.ch/optiwares</u> <u>https://www.psi.ch/lac/ccesccem-optiwares</u>